Reconstructing gene regulatory dynamics from high-dimensional single-cell snapshot data

被引:99
|
作者
Ocone, Andrea [1 ]
Haghverdi, Laleh [1 ]
Mueller, Nikola S. [1 ]
Theis, Fabian J. [1 ,2 ]
机构
[1] Helmholtz Zentrum Munchen, Inst Computat Biol, D-85764 Neuherberg, Germany
[2] Tech Univ Munich, Dept Math, D-85747 Garching, Germany
关键词
EXPRESSION; NETWORK; STEM; MODELS;
D O I
10.1093/bioinformatics/btv257
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: High-dimensional single-cell snapshot data are becoming widespread in the systems biology community, as a mean to understand biological processes at the cellular level. However, as temporal information is lost with such data, mathematical models have been limited to capture only static features of the underlying cellular mechanisms. Results: Here, we present a modular framework which allows to recover the temporal behaviour from single-cell snapshot data and reverse engineer the dynamics of gene expression. The framework combines a dimensionality reduction method with a cell time-ordering algorithm to generate pseudo time-series observations. These are in turn used to learn transcriptional ODE models and do model selection on structural network features. We apply it on synthetic data and then on real hematopoietic stem cells data, to reconstruct gene expression dynamics during differentiation pathways and infer the structure of a key gene regulatory network.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 50 条
  • [1] SCALABLE VISUALIZATION FOR HIGH-DIMENSIONAL SINGLE-CELL DATA
    Kim, Juho
    Russell, Nate
    Peng, Jian
    PACIFIC SYMPOSIUM ON BIOCOMPUTING 2017, 2017, : 623 - 634
  • [2] Diffusion maps for high-dimensional single-cell analysis of differentiation data
    Haghverdi, Laleh
    Buettner, Florian
    Theis, Fabian J.
    BIOINFORMATICS, 2015, 31 (18) : 2989 - 2998
  • [3] High-Dimensional Single-Cell Cancer Biology
    Irish, Jonathan M.
    Doxie, Deon B.
    HIGH-DIMENSIONAL SINGLE CELL ANALYSIS: MASS CYTOMETRY, MULTI-PARAMETRIC FLOW CYTOMETRY AND BIOINFORMATIC TECHNIQUES, 2014, 377 : 1 - 21
  • [4] Mapping gene regulatory networks from single-cell omics data
    Fiers, Mark W. E. J.
    Minnoye, Liesbeth
    Aibar, Sara
    Gonzalez-Blas, Carmen Bravo
    Atak, Zeynep Kalender
    Aerts, Stein
    BRIEFINGS IN FUNCTIONAL GENOMICS, 2018, 17 (04) : 246 - 254
  • [5] SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data
    Woodhouse, Steven
    Piterman, Nir
    Wintersteiger, Christoph M.
    Goettgens, Berthold
    Fisher, Jasmin
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [6] Learning Gene Regulatory Networks with High-Dimensional Heterogeneous Data
    Jia, Bochao
    Liang, Faming
    NEW FRONTIERS OF BIOSTATISTICS AND BIOINFORMATICS, 2018, : 305 - 327
  • [7] Inferring gene regulatory networks from single-cell data: a mechanistic approach
    Herbach, Ulysse
    Bonnaffoux, Arnaud
    Espinasse, Thibault
    Gandrillon, Olivier
    BMC SYSTEMS BIOLOGY, 2017, 11
  • [8] High-dimensional single-cell phenotyping reveals extensive haploinsufficiency
    Ohnuki, Shinsuke
    Ohya, Yoshikazu
    PLOS BIOLOGY, 2018, 16 (05):
  • [9] High-dimensional single-cell analysis of human natural killer cell heterogeneity
    Rebuffet, Lucas
    Melsen, Janine E.
    Escaliere, Bertrand
    Basurto-Lozada, Daniela
    Bhandoola, Avinash
    Bjorkstrom, Niklas K.
    Bryceson, Yenan T.
    Castriconi, Roberta
    Cichocki, Frank
    Colonna, Marco
    Davis, Daniel M.
    Diefenbach, Andreas
    Ding, Yi
    Haniffa, Muzlifah
    Horowitz, Amir
    Lanier, Lewis L.
    Malmberg, Karl-Johan
    Miller, Jeffrey S.
    Moretta, Lorenzo
    Narni-Mancinelli, Emilie
    O'Neill, Luke A. J.
    Romagnani, Chiara
    Ryan, Dylan G.
    Sivori, Simona
    Sun, Dan
    Vagne, Constance
    Vivier, Eric
    NATURE IMMUNOLOGY, 2024, 25 (08) : 1474 - 1488
  • [10] Quantifying cancer cell plasticity with gene regulatory networks and single-cell dynamics
    Groves, Sarah M.
    Quaranta, Vito
    FRONTIERS IN NETWORK PHYSIOLOGY, 2023, 3