Strong texturing of lithium metal in batteries

被引:230
作者
Shi, Feifei [1 ]
Pei, Allen [1 ]
Vailionis, Arturas [2 ]
Xie, Jin [1 ]
Liu, Bofei [1 ]
Zhao, Jie [1 ]
Gong, Yongji [1 ]
Cui, Yi [1 ,3 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Stanford Nano Shared Facil, Stanford, CA 94305 USA
[3] Stanford Linear Accelerator Ctr, Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
基金
美国国家科学基金会;
关键词
lithium metal; texture; battery; electrocrystallization; morphology; LI-ION BATTERIES; RECHARGEABLE BATTERIES; DENDRITIC GROWTH; ELECTROLYTES; ELECTRODES; DEPOSITION; ANODES; LI-O-2; MECHANISMS; MICROSCOPY;
D O I
10.1073/pnas.1708224114
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium, with its high theoretical specific capacity and lowest electrochemical potential, has been recognized as the ultimate negative electrode material for next-generation lithium-based high-energy-density batteries. However, a key challenge that has yet to be overcome is the inferior reversibility of Li plating and stripping, typically thought to be related to the uncontrollable morphology evolution of the Li anode during cycling. Here we show that Li-metal texturing (preferential crystallographic orientation) occurs during electrochemical deposition, which governs the morphological change of the Li anode. X-ray diffraction pole-figure analysis demonstrates that the texture of Li deposits is primarily dependent on the type of additive or cross-over molecule from the cathode side. With adsorbed additives, like LiNO3 and polysulfide, the lithium deposits are strongly textured, with Li (110) planes parallel to the substrate, and thus exhibit uniform, rounded morphology. A growth diagram of lithium deposits is given to connect various texture and morphology scenarios for different battery electrolytes. This understanding of lithium electrocrystallization from the crystallographic point of view provides significant insight for future lithium anode materials design in high-energy-density batteries.
引用
收藏
页码:12138 / 12143
页数:6
相关论文
共 47 条
[1]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[2]   Attempts to improve the behavior of Li electrodes in rechargeable lithium batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Cohen, Y ;
Salitra, G ;
Yamin, H ;
Dan, P ;
Elster, E .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (10) :A1267-A1277
[3]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[4]  
Aurbach D, 1999, NONAQUEOUS ELECTROCH, P336
[5]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[6]   CORROSION PROTECTION OF SECONDARY LITHIUM ELECTRODES IN ORGANIC ELECTROLYTES [J].
BESENHARD, JO ;
GURTLER, J ;
KOMENDA, P .
JOURNAL OF POWER SOURCES, 1987, 20 (3-4) :253-258
[7]   Electron Backscatter Diffraction Applied to Lithium Sheets Prepared by Broad Ion Beam Milling [J].
Brodusch, Nicolas ;
Zaghib, Karim ;
Gauvin, Raynald .
MICROSCOPY RESEARCH AND TECHNIQUE, 2015, 78 (01) :30-39
[8]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[9]   Live scanning electron microscope observations of dendritic growth in lithium/polymer cells [J].
Dollé, M ;
Sannier, L ;
Beaudoin, B ;
Trentin, M ;
Tarascon, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2002, 5 (12) :A286-A289
[10]   Visualization and Quantification of Electrochemical and Mechanical Degradation in Li Ion Batteries [J].
Ebner, Martin ;
Marone, Federica ;
Stampanoni, Marco ;
Wood, Vanessa .
SCIENCE, 2013, 342 (6159) :716-720