Complex Density Wave Orders and Quantum Phase Transitions in a Model of Square-Lattice Rydberg Atom Arrays

被引:71
作者
Samajdar, Rhine [1 ]
Ho, Wen Wei [1 ]
Pichler, Hannes [1 ,2 ,3 ]
Lulcin, Mikhail D. [1 ]
Sachdev, Subir [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Harvard Smithsonian Ctr Astrophys, ITAMP, 60 Garden St, Cambridge, MA 02138 USA
[3] CALTECH, Div Phys Math & Astron, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
MATRIX RENORMALIZATION-GROUP; CRITICAL EXPONENTS; N GREATER; COSMOLOGICAL EXPERIMENTS; PHYSICAL REALIZATIONS; CRITICAL-BEHAVIOR; ISING-MODEL; UNIVERSALITY; STATES; FIELD;
D O I
10.1103/PhysRevLett.124.103601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe the zero-temperature phase diagram of a model of a two-dimensional square-lattice array of neutral atoms, excited into Rydberg states and interacting via strong van der Waals interactions. Using the density-matrix renormalization group algorithm, we map out the phase diagram and obtain a rich variety of phases featuring complex density wave orderings, upon varying lattice spacing and laser detuning. While some of these phases result from the classical optimization of the van der Waals energy, we also find intrinsically quantum-ordered phases stabilized by quantum fluctuations. These phases are surrounded by novel quantum phase transitions, which we analyze by finite-size scaling numerics and Landau theories. Our work highlights Rydberg quantum simulators in higher dimensions as promising platforms to realize exotic many-body phenomena.
引用
收藏
页数:7
相关论文
共 107 条
[1]  
Aharony A., 1976, PHASE TRANSITIONS CR, V6, P357
[2]  
[Anonymous], ARXIV190703311
[3]  
[Anonymous], RENORMALIZATION GROU
[4]  
[Anonymous], SCIENCE
[5]  
[Anonymous], COMMUN THEOR PHYS
[6]  
[Anonymous], 2011, QUANTUM PHASE TRANSI
[7]  
[Anonymous], ARXIVHEPTH9810198
[8]  
[Anonymous], 2002, Int. Ser. Monogr. Phys.
[9]  
[Anonymous], ARXIV180904954
[10]   CRITICAL EXPONENTS FOR A 3-DIMENSIONAL O(N)-SYMMETRICAL MODEL WITH N-GREATER-THAN-3 [J].
ANTONENKO, SA ;
SOKOLOV, AI .
PHYSICAL REVIEW E, 1995, 51 (03) :1894-1898