Iterative methods for computing generalized inverses related with optimization methods

被引:12
作者
Djordjevic, DS [1 ]
Stanimirovic, PS [1 ]
机构
[1] Univ Nish, Fac Sci & Math, YU-18000 Nish, Serbia, Serbia
关键词
generalized inverses; Moore-Penrose inverse; iterative methods; nonlinear optimization;
D O I
10.1017/S1446788700008077
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop several iterative methods for computing generalized inverses using both first and second order optimization methods in C*-algebras. Known steepest descent iterative methods are generalized in C*-algebras. We introduce second order methods based on the minimization of the norms parallel to Ax - b parallel to(2) and parallel to x parallel to(2) by means of the known second order unconstrained minimization methods. We give several examples which illustrate our theory.
引用
收藏
页码:257 / 272
页数:16
相关论文
共 14 条
[1]  
[Anonymous], 1966, SIAM Journal on Numerical Analysis, DOI DOI 10.1137/0703035
[2]  
[Anonymous], 1967, SIAM J NUMER ANAL
[3]  
CARADUS SR, 1978, GENERALIZED INVERSES
[4]   QUASI-NEWTON METHODS, MOTIVATION AND THEORY [J].
DENNIS, JE ;
MORE, JJ .
SIAM REVIEW, 1977, 19 (01) :46-89
[5]   On the generalized Drazin inverse and generalized resolvent [J].
Djordjevic, DS ;
Stanimirovic, PS .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2001, 51 (03) :617-634
[6]  
GROETSCH CW, 1977, GENERALIZED INVERSES
[7]   ON GENERALIZED INVERSES IN C-ASTERISK-ALGEBRAS [J].
HARTE, R ;
MBEKHTA, M .
STUDIA MATHEMATICA, 1992, 103 (01) :71-77
[8]   CONVERGENCE OF CONJUGATE GRADIENT METHOD FOR SINGULAR LINEAR OPERATOR EQUATIONS [J].
KAMMERER, WJ ;
NASHED, MZ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (01) :165-+
[9]   A generalized Drazin inverse [J].
Koliha, JJ .
GLASGOW MATHEMATICAL JOURNAL, 1996, 38 :367-381
[10]   A CLASS OF ITERATIVE METHODS OF CONJUGATE-GRADIENT TYPE [J].
LARDY, LJ .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1990, 11 (3-4) :283-302