Strictly positive definite functions on a real inner product space

被引:25
作者
Pinkus, A [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
关键词
strictly positive definite; inner product space;
D O I
10.1023/A:1027362918283
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If f(t)=Sigma(k=0)(infinity) a(k)t(k) converges for all tis an element ofR with all coefficients a(k)greater than or equal to0, then the function f (<x,y>) is positive definite on H x H for any inner product space H. Set K={k:a(k)>0}. We show that f (<x,y>) is strictly positive definite if and only if K contains the index 0 plus an infinite number of even integers and an infinite number of odd integers.
引用
收藏
页码:263 / 271
页数:9
相关论文
共 11 条
[1]  
[Anonymous], APPROX THEORY APPL
[2]  
Berg C., 1984, HARMONIC ANAL SEMIGR
[3]  
Burges CJC, 2000, ADV NEUR IN, V12, P223
[4]   FUNCTIONS THAT PRESERVE FAMILIES OF POSITIVE SEMIDEFINITE MATRICES [J].
FITZGERALD, CH ;
MICCHELLI, CA ;
PINKUS, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1995, 221 :83-102
[5]  
Horn RA., 2013, Topics in Matrix Analysis, V2nd ed, DOI DOI 10.1017/CBO9780511840371
[6]  
Polya G., 1976, PROBLEMS THEOREMS AN, VII
[7]  
SCHOENBERG I. J., 1942, Duke Math. J., V9, P96
[8]   The connection between regularization operators and support vector kernels [J].
Smola, AJ ;
Scholkopf, B ;
Muller, KR .
NEURAL NETWORKS, 1998, 11 (04) :637-649
[9]  
Steinwart I, 2002, J MACH LEARN RES, V2, P67, DOI 10.1162/153244302760185252
[10]  
Steinwart I., SUPPORT VECTOR MACHI