Growth of quantum-confined CdS nanoparticles inside Ti-MCM-41 as a visible light photocatalyst

被引:72
作者
Shaohua Shen [1 ]
Liejin Guo [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
composites; semiconductors; chemical synthesis; Raman spectroscopy; optical properties;
D O I
10.1016/j.materresbull.2007.02.034
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
CdS nanocrystallites have been successfully incorporated into the mesopores of Ti-MCM-41 by a two-step method involving ion-exchange and sulfidation. The X-ray diffraction patterns (XRD), UV-vis absorption spectra (UV-vis), photoluminescence spectra (PL), Raman spectra and N-2 adsorption-desorption isotherms were used to characterize the structure of the composite materials. It is found that most of the CdS nanocrystallites are about 2.6 nm, less than the pore diameter of Ti-MCM-41. The CdS nanocrystallites inside the mesopores of Ti-MCM-41 host show a significant blue shift in the UV-vis absorption spectrum. Under irradiation of visible light (lambda > 430 nm), the composite material has greater and more stable photocatalytic activity for hydrogen evolution than bulk CdS, which can be explained by the effective charge separation between the CdS nanocrystallites and mesoporous Ti-MCM-41. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 48 条
[1]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[2]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[3]   Carbon nanotube/CdS core-shell nanowires prepared by a simple room-temperature chemical reduction method [J].
Cao, J ;
Sun, JZ ;
Hong, J ;
Li, HY ;
Chen, HZ ;
Wang, M .
ADVANCED MATERIALS, 2004, 16 (01) :84-+
[4]   Emission characteristics of CdS nanoparticles induced by confinement within MCM-41 nanotubes [J].
Chae, WS ;
Ko, JH ;
Hwang, IW ;
Kim, YR .
CHEMICAL PHYSICS LETTERS, 2002, 365 (1-2) :49-56
[5]   Thermal and hydrothermal stability of framework-substituted MCM-41 mesoporous materials [J].
Chen, LY ;
Jaenicke, S ;
Chuah, GK .
MICROPOROUS MATERIALS, 1997, 12 (4-6) :323-330
[6]  
De GC, 1996, INT J HYDROGEN ENERG, V21, P19, DOI 10.1016/0360-3199(95)00031-8
[7]   Cadmium sulphide clusters grown on zeolite and MCM-41-type matrices [J].
Diaz, I ;
Hernández-Vélez, M ;
Palma, RJM ;
Garcia, HV ;
Pariente, JP ;
Martínez-Duart, JM .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (03) :565-572
[8]   CORRELATION OF RAMAN-SPECTRA OF ZEOLITES WITH FRAMEWORK ARCHITECTURE [J].
DUTTA, PK ;
RAO, KM ;
PARK, JY .
JOURNAL OF PHYSICAL CHEMISTRY, 1991, 95 (17) :6654-6656
[9]   PHOTOELECTRON TRANSFER FROM TRIS(2,2'-BIPYRIDINE)RUTHENIUM(II) TO METHYLVIOLOGEN IN ZEOLITE CAGES - A RESONANCE RAMAN-SPECTROSCOPIC STUDY [J].
DUTTA, PK ;
INCAVO, JA .
JOURNAL OF PHYSICAL CHEMISTRY, 1987, 91 (17) :4443-4446
[10]  
Ettireddy P., 2002, J PHYS CHEM B, V106, P3394