Coupled Systems of Sequential Caputo and Hadamard Fractional Differential Equations with Coupled Separated Boundary Conditions

被引:19
作者
Asawasamrit, Suphawat [1 ]
Ntouyas, Sotiris K. [2 ,3 ]
Tariboon, Jessada [1 ]
Nithiarayaphaks, Woraphak [1 ]
机构
[1] King Mongkuts Univ Technol North Bangkok, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Fac Sci Appl, Bangkok 10800, Thailand
[2] Univ Ioannina, Dept Math, GR-45110 Ioannina, Greece
[3] King Abdulaziz Univ, Dept Math, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
来源
SYMMETRY-BASEL | 2018年 / 10卷 / 12期
关键词
Caputo fractional derivative; Hadamard fractional derivative; coupled system; separated boundary conditions; existence;
D O I
10.3390/sym10120701
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper studies the existence and uniqueness of solutions for a new coupled system of nonlinear sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions, which include as special cases the well-known symmetric boundary conditions. Banach's contraction principle, Leray-Schauder's alternative, and Krasnoselskii's fixed-point theorem were used to derive the desired results, which are well-illustrated with examples.
引用
收藏
页数:17
相关论文
共 23 条
[1]  
Ahmad B., 2017, HADAMARD TYPE FRACTI
[2]   Existence of solutions for a sequential fractional integro-differential system with coupled integral boundary conditions [J].
Ahmad, Bashir ;
Luca, Rodica .
CHAOS SOLITONS & FRACTALS, 2017, 104 :378-388
[3]  
Ahmad B, 2017, B MATH SOC SCI MATH, V60, P3
[4]  
[Anonymous], 2003, FIXED POINT THEOR-RO, DOI DOI 10.1007/978-0-387-21593-8
[5]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[6]  
[Anonymous], 2006, Journal of the Electrochemical Society
[7]  
Assante D., 2015, J. Eng. Sci. Technol. Rev, V8, P202, DOI [10.25103/jestr.085.25, DOI 10.25103/JESTR.085.25]
[8]  
Carvalho A., 2017, Int. J. Dyn. Cont, V5, P168, DOI [10.1007/s40435-016-0224-3, DOI 10.1007/S40435-016-0224-3]
[9]   LMI-based stabilization of a class of fractional-order chaotic systems [J].
Faieghi, Mohammadreza ;
Kuntanapreeda, Suwat ;
Delavari, Hadi ;
Baleanu, Dumitru .
NONLINEAR DYNAMICS, 2013, 72 (1-2) :301-309
[10]   ON A SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH COUPLED INTEGRAL BOUNDARY CONDITIONS [J].
Henderson, Johnny ;
Luca, Rodica ;
Tudorache, Alexandru .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (02) :361-386