Description of unconditional bases formed by values of the Dunkl kernels

被引:2
作者
Gubreev, G. M. [1 ]
Levchuk, V. N. [1 ]
机构
[1] Poltava Natl Tech Univ, Poltava, Ukraine
关键词
Dunkl transform; unconditional basis; non-self-adjoint operator; entire function; PALEY-WIENER THEOREMS; TRANSFORM; OPERATORS;
D O I
10.1007/s10688-015-0085-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Unconditional bases of the form {d (alpha)(i lambda(n)l) : lambda(n) is an element of Lambda} in the space L-2(-a, a) with measure vertical bar x vertical bar(gamma) dx, gamma = 2 alpha + 1, are described. Here d(alpha)(ixt) is the Dunkl kernel determined by d(alpha)(z) = 2(alpha)Gamma(alpha + 1)z(-alpha)(J(alpha)(z) + iJ(alpha+1)(z)), alpha > -1, where J(alpha) is the Bessel function of the first kind.
引用
收藏
页码:64 / 66
页数:3
相关论文
共 8 条
[1]  
Andersen NB, 2005, INT MATH RES NOTICES, V2005, P1817
[2]   Paley-Wiener theorems for the Dunkl transform [J].
de Jeu, Marcel .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (10) :4225-4250
[4]  
Dzhrbashyan M. M., 1966, INTEGRAL TRANSFORM R
[5]  
Garnett J. B., 1981, BOUNDED ANAL FUNCTIO
[6]   Regular Mittag-Leffler kernels and spectral decomposition of a class of non-selfadjoint operators [J].
Gubreev, GM .
IZVESTIYA MATHEMATICS, 2005, 69 (01) :15-57
[7]  
GUBREEV GM, 2001, ST PETERSB MATH J, V12, P875
[8]  
Levin B.J., 1980, Translations of Mathematical Monographs, V5