Big data in digital healthcare: lessons learnt and recommendations for general practice

被引:99
作者
Agrawal, Raag [1 ,2 ]
Prabakaran, Sudhakaran [1 ,3 ,4 ]
机构
[1] Univ Cambridge, Dept Genet, Downing Site, Cambridge CB2 3EH, England
[2] Columbia Univ, Dept Biol, 116th & Broadway, New York, NY 10027 USA
[3] Indian Inst Sci Educ & Res, Dept Biol, Pune 411008, Maharashtra, India
[4] Univ Cambridge, St Edmunds Coll, Cambridge CB3 0BN, England
关键词
MEDICINE; ONCOLOGY; CANCER; DNA;
D O I
10.1038/s41437-020-0303-2
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Big Data will be an integral part of the next generation of technological developments-allowing us to gain new insights from the vast quantities of data being produced by modern life. There is significant potential for the application of Big Data to healthcare, but there are still some impediments to overcome, such as fragmentation, high costs, and questions around data ownership. Envisioning a future role for Big Data within the digital healthcare context means balancing the benefits of improving patient outcomes with the potential pitfalls of increasing physician burnout due to poor implementation leading to added complexity. Oncology, the field where Big Data collection and utilization got a heard start with programs like TCGA and the Cancer Moon Shot, provides an instructive example as we see different perspectives provided by the United States (US), the United Kingdom (UK) and other nations in the implementation of Big Data in patient care with regards to their centralization and regulatory approach to data. By drawing upon global approaches, we propose recommendations for guidelines and regulations of data use in healthcare centering on the creation of a unique global patient ID that can integrate data from a variety of healthcare providers. In addition, we expand upon the topic by discussing potential pitfalls to Big Data such as the lack of diversity in Big Data research, and the security and transparency risks posed by machine learning algorithms.
引用
收藏
页码:525 / 534
页数:10
相关论文
共 57 条
[1]  
Adibuzzaman Mohammad, 2017, AMIA Annu Symp Proc, V2017, P384
[2]   Blockchain Technology in Healthcare: A Systematic Review [J].
Agbo, Cornelius C. ;
Mahmoud, Qusay H. ;
Eklund, J. Mikael .
HEALTHCARE, 2019, 7 (02)
[3]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[4]   The PsychENCODE project [J].
Akbarian, Schahram ;
Liu, Chunyu ;
Knowles, James A. ;
Vaccarino, Flora M. ;
Farnham, Peggy J. ;
Crawford, Gregory E. ;
Jaffe, Andrew E. ;
Pinto, Dalila ;
Dracheva, Stella ;
Geschwind, Daniel H. ;
Mill, Jonathan ;
Nairn, Angus C. ;
Abyzov, Alexej ;
Pochareddy, Sirisha ;
Prabhakar, Shyam ;
Weissman, Sherman ;
Sullivan, Patrick F. ;
State, Matthew W. ;
Weng, Zhiping ;
Peters, Mette A. ;
White, Kevin P. ;
Gerstein, Mark B. ;
Amiri, Anahita ;
Armoskus, Chris ;
Ashley-Koch, Allison E. ;
Bae, Taejeong ;
Beckel-Mitchener, Andrea ;
Berman, Benjamin P. ;
Coetzee, Gerhard A. ;
Coppola, Gianfilippo ;
Francoeur, Nancy ;
Fromer, Menachem ;
Gao, Robert ;
Grennan, Kay ;
Herstein, Jennifer ;
Kavanagh, David H. ;
Ivanov, Nikolay A. ;
Jiang, Yan ;
Kitchen, Robert R. ;
Kozlenkov, Alexey ;
Kundakovic, Marija ;
Li, Mingfeng ;
Li, Zhen ;
Liu, Shuang ;
Mangravite, Lara M. ;
Mattei, Eugenio ;
Markenscoff-Papadimitriou, Eirene ;
Navarro, Fabio C. P. ;
North, Nicole ;
Omberg, Larsson .
NATURE NEUROSCIENCE, 2015, 18 (12) :1707-1712
[5]   The "All of Us" Research Program [J].
Denny J.C. ;
Rutter J.L. ;
Goldstein D.B. ;
Philippakis A. ;
Smoller J.W. ;
Jenkins G. ;
Dishman E. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (07) :668-676
[6]   UK Biobank: Current status and what it means for epidemiology [J].
Allen, Naomi ;
Sudlow, Cathie ;
Downey, Paul ;
Peakman, Tim ;
Danesh, John ;
Elliott, Paul ;
Gallacher, John ;
Green, Jane ;
Matthews, Paul ;
Pell, Jill ;
Sprosen, Tim ;
Collins, Rory .
HEALTH POLICY AND TECHNOLOGY, 2012, 1 (03) :123-126
[7]   Assessing EHR use during hospital morning rounds: A multi-faceted study [J].
Assis-Hassid, Shiri ;
Grosz, Barbara J. ;
Zimlichman, Eyal ;
Rozenblum, Ronen ;
Bates, David W. .
PLOS ONE, 2019, 14 (02)
[8]   Using big data to see the forest and the trees: endoscopic submucosal dissection of early gastric cancer in Korea [J].
Bang, Chang Seok ;
Baik, Gwang Ho .
KOREAN JOURNAL OF INTERNAL MEDICINE, 2019, 34 (04) :772-774
[9]  
Bender D, 2013, COMP MED SY, P326, DOI 10.1109/CBMS.2013.6627810
[10]   Big Data and machine learning in radiation oncology: State of the art and future prospects [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Burgun, Anita .
CANCER LETTERS, 2016, 382 (01) :110-117