Role of Na-Montmorillonite on Microbially Induced Calcium Carbonate Precipitation

被引:7
|
作者
Tang, Guowang [1 ]
Jia, Cangqin [1 ,2 ]
Wang, Guihe [1 ]
Yu, Peizhi [1 ]
Zhang, Haonan [1 ]
机构
[1] China Univ Geosci, Sch Engn & Technol, Beijing 100083, Peoples R China
[2] China Univ Geosci, Key Lab Deep Geodrilling Technol, Minist Land & Resources, Beijing 100083, Peoples R China
来源
MOLECULES | 2021年 / 26卷 / 20期
基金
中国国家自然科学基金;
关键词
calcium carbonate; morphology of precipitates; Na-montmorillonite; hydraulic conductivity; bio-mineralization; ENGINEERING PROPERTIES; CACO3; PRECIPITATION; CRYSTAL MORPHOLOGY; IONIC LIQUID; SOIL; ADSORPTION; BACTERIA; CEMENTATION; SAND; REMEDIATION;
D O I
10.3390/molecules26206211
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The use of additives has generated significant attention due to their extensive application in the microbially induced calcium carbonate precipitation (MICP) process. This study aims to discuss the effects of Na-montmorillonite (Na-MMT) on CaCO3 crystallization and sandy soil consolidation through the MICP process. Compared with the traditional MICP method, a larger amount of CaCO3 precipitate was obtained. Moreover, the reaction of Ca2+ ions was accelerated, and bacteria were absorbed by a small amount of Na-MMT. Meanwhile, an increase in the total cementing solution (TCS) was not conducive to the previous reaction. This problem was solved by conducting the reaction with Na-MMT. The polymorphs and morphologies of the CaCO3 precipitates were tested by using X-ray diffraction and scanning electron microscopy. Further, when Na-MMT was used, the morphology of CaCO3 changed from an individual precipitate to agglomerations of the precipitate. Compared to the experiments without Na-MMT in the MICP process, the addition of Na-MMT significantly reduced the hydraulic conductivity (HC) of sandy soil consolidated.</p>
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Graphene oxide on microbially induced calcium carbonate precipitation
    Tang, Guowang
    Wang, Guihe
    An, Yuxiu
    Zhang, Haonan
    INTERNATIONAL BIODETERIORATION & BIODEGRADATION, 2019, 145
  • [2] Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world
    Seifan, Mostafa
    Berenjian, Aydin
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (12) : 4693 - 4708
  • [3] Reductions in Hydraulic Conductivity of Sands Caused by Microbially Induced Calcium Carbonate Precipitation
    Baek, Seung-Hun
    Kwon, Tae-Hyuk
    Dejong, Jason T.
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2024, 150 (02)
  • [4] Microbially Induced Calcium Carbonate Precipitation in Construction Materials
    Bhutange, Snigdha P.
    Latkar, M. V.
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (05)
  • [5] Towards the sustainable fine control of microbially induced calcium carbonate precipitation
    Chen, Yongqing
    Wang, Shiqing
    Tong, XinYang
    Kang, Xin
    JOURNAL OF CLEANER PRODUCTION, 2022, 377
  • [6] Microbially Induced Calcium Carbonate Precipitation as a Bioremediation Technique for Mining Waste
    Wilcox, Samantha M.
    Mulligan, Catherine N.
    Neculita, Carmen Mihaela
    TOXICS, 2024, 12 (02)
  • [7] Complementing urea hydrolysis and nitrate reduction for improved microbially induced calcium carbonate precipitation
    Zhu, Xuejiao
    Wang, Jianyun
    De Belie, Nele
    Boon, Nico
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2019, 103 (21-22) : 8825 - 8838
  • [8] Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world
    Mostafa Seifan
    Aydin Berenjian
    Applied Microbiology and Biotechnology, 2019, 103 : 4693 - 4708
  • [9] Toxicity effects on metal sequestration by microbially-induced carbonate precipitation
    Mugwar, Ahmed J.
    Harbottle, Michael J.
    JOURNAL OF HAZARDOUS MATERIALS, 2016, 314 : 237 - 248
  • [10] Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery
    Wu, Jun
    Wang, Xian-Bin
    Wang, Hou-Feng
    Zeng, Raymond J.
    RSC ADVANCES, 2017, 7 (59) : 37382 - 37391