Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

被引:6
|
作者
Xu, Huan [1 ]
Ding, Feng [1 ,2 ]
Yang, Erfu [3 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
[3] Univ Strathclyde, Strathclyde Space Inst, Dept Design Mfg & Engn Management, Space Mechatron Syst Technol Lab, Glasgow G1 1XJ, Lanark, Scotland
来源
IET CONTROL THEORY AND APPLICATIONS | 2020年 / 14卷 / 02期
基金
中国国家自然科学基金;
关键词
gradient methods; recursive estimation; time series; parameter estimation; least squares approximations; stochastic processes; autoregressive moving average processes; MI-ESG algorithm; parameter estimation accuracy; appropriate innovation length; forgetting factor; unknown parameters; ExpARMA model; recursive search-based identification algorithms; exponential autoregressive time series model; coloured noise; recursive parameter estimation problems; nonlinear exponential autoregressive model; average noise; gradient search; extended stochastic gradient algorithm; optimal step-size; multiinnovation identification theory; multiinnovation ESG algorithm; PARAMETER-ESTIMATION ALGORITHM; STATE-SPACE SYSTEM; NONLINEAR-SYSTEMS; DESIGN; SPEED;
D O I
10.1049/iet-cta.2019.0429
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [41] Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model
    Hu, Huiyi
    Ding, Rui
    NONLINEAR DYNAMICS, 2014, 76 (01) : 777 - 784
  • [42] Auxiliary model-based multi-innovation recursive identification algorithms for an input nonlinear controlled autoregressive moving average system with variable-gain nonlinearity
    Fan, Yamin
    Liu, Ximei
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (03) : 521 - 540
  • [43] The covariation-based Yule-Walker method for multidimensional autoregressive time series with α-stable distributed noise
    Grzesiek, Aleksandra
    Mrozinska, Marta
    Giri, Prashant
    Sundar, S.
    Wylomanska, Agnieszka
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2021, 13 (04) : 394 - 414
  • [44] Structural Damage Identification Method Based on Time Series Model
    Zhang Y.
    Luo Y.
    Guo X.
    Liu J.
    Zhu Z.
    Tongji Daxue Xuebao/Journal of Tongji University, 2019, 47 (12): : 1691 - 1700and1755
  • [45] Forecasting Seasonal Time Series Using Weighted Gradient RBF Network based Autoregressive Model
    Ruan, Wenjie
    Sheng, Quan Z.
    Xu, Peipei
    Nguyen Khoi Tran
    Falkner, Nickolas J. G.
    Li, Xue
    Zhang, Wei Emma
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 2021 - 2024
  • [46] Autoregressive-Model-Based Missing Value Estimation for DNA Microarray Time Series Data
    Choong, Miew Keen
    Charbit, Maurice
    Yan, Hong
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (01): : 131 - 137
  • [47] Identification of the Noise Model in the Time Series of GNSS Stations Coordinates Using Wavelet Analysis
    Kaczmarek, Adrian
    Kontny, Bernard
    REMOTE SENSING, 2018, 10 (10):
  • [48] A wavelet-based time-varying autoregressive model for non-stationary and irregular time series
    Salcedo, G. E.
    Porto, R. F.
    Roa, S. Y.
    Momo, F. R.
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (11) : 2313 - 2325
  • [49] Prediction of oil well production based on the time series model of optimized recursive neural network
    Cheng, Yuefei
    Yang, Yang
    PETROLEUM SCIENCE AND TECHNOLOGY, 2021, 39 (9-10) : 303 - 312
  • [50] Nonlinear time series prediction based on a power-law noise model
    Emmert-Streib, Frank
    Dehmer, Matthias
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (12): : 1839 - 1852