Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

被引:6
|
作者
Xu, Huan [1 ]
Ding, Feng [1 ,2 ]
Yang, Erfu [3 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
[3] Univ Strathclyde, Strathclyde Space Inst, Dept Design Mfg & Engn Management, Space Mechatron Syst Technol Lab, Glasgow G1 1XJ, Lanark, Scotland
来源
IET CONTROL THEORY AND APPLICATIONS | 2020年 / 14卷 / 02期
基金
中国国家自然科学基金;
关键词
gradient methods; recursive estimation; time series; parameter estimation; least squares approximations; stochastic processes; autoregressive moving average processes; MI-ESG algorithm; parameter estimation accuracy; appropriate innovation length; forgetting factor; unknown parameters; ExpARMA model; recursive search-based identification algorithms; exponential autoregressive time series model; coloured noise; recursive parameter estimation problems; nonlinear exponential autoregressive model; average noise; gradient search; extended stochastic gradient algorithm; optimal step-size; multiinnovation identification theory; multiinnovation ESG algorithm; PARAMETER-ESTIMATION ALGORITHM; STATE-SPACE SYSTEM; NONLINEAR-SYSTEMS; DESIGN; SPEED;
D O I
10.1049/iet-cta.2019.0429
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [31] Series arc fault identification in low voltage system based on autoregressive parameter model
    Yong, Jing
    Gui, Xiaozhi
    Niu, Liangliang
    Zeng, Liqiang
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2011, 26 (08): : 213 - 219
  • [32] Estimation of the parameters of vector autoregressive moving average (VARMA) time series model with symmetric stable noise
    Sathe, Aastha M.
    Chowdhury, Raju
    Upadhye, N. S.
    INTERNATIONAL JOURNAL OF ADVANCES IN ENGINEERING SCIENCES AND APPLIED MATHEMATICS, 2021, 13 (2-3) : 206 - 214
  • [33] A Comparison Between Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ES) Based on Time Series Model for Forecasting Road Accidents
    Muhammad Babar Ali Rabbani
    Muhammad Ali Musarat
    Wesam Salah Alaloul
    Muhammad Shoaib Rabbani
    Ahsen Maqsoom
    Saba Ayub
    Hamna Bukhari
    Muhammad Altaf
    Arabian Journal for Science and Engineering, 2021, 46 : 11113 - 11138
  • [34] A Comparison Between Seasonal Autoregressive Integrated Moving Average (SARIMA) and Exponential Smoothing (ES) Based on Time Series Model for Forecasting Road Accidents
    Rabbani, Muhammad Babar Ali
    Musarat, Muhammad Ali
    Alaloul, Wesam Salah
    Rabbani, Muhammad Shoaib
    Maqsoom, Ahsen
    Ayub, Saba
    Bukhari, Hamna
    Altaf, Muhammad
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (11) : 11113 - 11138
  • [35] Modal identification based on Gaussian continuous time autoregressive moving average model
    Du Xiuli
    Wang Fengquan
    JOURNAL OF SOUND AND VIBRATION, 2010, 329 (20) : 4294 - 4312
  • [36] Three-stage multi-innovation parameter estimation for an exponential autoregressive time-series model with moving average noise by using the data filtering technique
    Xu, Huan
    Ding, Feng
    Yang, Erfu
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (01) : 166 - 184
  • [37] Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model
    Ding, Feng
    Wang, Yanjiao
    Ding, Jie
    DIGITAL SIGNAL PROCESSING, 2015, 37 : 100 - 108
  • [38] Seasonal and trend time series forecasting based on a quasi-linear autoregressive model
    Gan, Min
    Cheng, Yu
    Liu, Kai
    Zhang, Gang-lin
    APPLIED SOFT COMPUTING, 2014, 24 : 13 - 18
  • [39] Research on Wearing Prediction of the Cylinder Surface Based on Time Series Autoregressive (AR) Model
    Zhu Zongming
    Tan Bo
    Liang Liang
    Pang Youxia
    2013 FIFTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2013), 2013, : 960 - 962
  • [40] Least squares based iterative identification algorithms for input nonlinear controlled autoregressive systems based on the auxiliary model
    Huiyi Hu
    Rui Ding
    Nonlinear Dynamics, 2014, 76 : 777 - 784