Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

被引:6
|
作者
Xu, Huan [1 ]
Ding, Feng [1 ,2 ]
Yang, Erfu [3 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
[3] Univ Strathclyde, Strathclyde Space Inst, Dept Design Mfg & Engn Management, Space Mechatron Syst Technol Lab, Glasgow G1 1XJ, Lanark, Scotland
来源
IET CONTROL THEORY AND APPLICATIONS | 2020年 / 14卷 / 02期
基金
中国国家自然科学基金;
关键词
gradient methods; recursive estimation; time series; parameter estimation; least squares approximations; stochastic processes; autoregressive moving average processes; MI-ESG algorithm; parameter estimation accuracy; appropriate innovation length; forgetting factor; unknown parameters; ExpARMA model; recursive search-based identification algorithms; exponential autoregressive time series model; coloured noise; recursive parameter estimation problems; nonlinear exponential autoregressive model; average noise; gradient search; extended stochastic gradient algorithm; optimal step-size; multiinnovation identification theory; multiinnovation ESG algorithm; PARAMETER-ESTIMATION ALGORITHM; STATE-SPACE SYSTEM; NONLINEAR-SYSTEMS; DESIGN; SPEED;
D O I
10.1049/iet-cta.2019.0429
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [21] Automatic clustering-based identification of autoregressive fuzzy inference models for time series
    Pouzols, Federico Montesino
    Barriga Barros, Angel
    NEUROCOMPUTING, 2010, 73 (10-12) : 1937 - 1949
  • [22] A BIVARIATE 1ST-ORDER AUTOREGRESSIVE TIME-SERIES MODEL IN EXPONENTIAL VARIABLES (BEAR(1))
    DEWALD, LS
    LEWIS, PAW
    MCKENZIE, E
    MANAGEMENT SCIENCE, 1989, 35 (10) : 1236 - 1246
  • [23] TaiWan Ionospheric Model (TWIM) prediction based on time series autoregressive analysis
    Tsai, L. C.
    Macalalad, Ernest P.
    Liu, C. H.
    RADIO SCIENCE, 2014, 49 (10) : 977 - 986
  • [24] Local Prediction of Chaotic Time Series Based on Polynomial Coefficient Autoregressive Model
    Su, Liyun
    Li, Chenlong
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [25] Fuzzy Autoregressive Time Series Model Based on Symmetry Triangular Fuzzy Numbers
    Efendi, Riswan
    Imandari, Adhe N.
    Rahmadhani, Yusnita
    Suhartono
    Samsudin, Noor A.
    Arbai, Nureize
    Deris, Mustafa M.
    NEW MATHEMATICS AND NATURAL COMPUTATION, 2021, 17 (02) : 387 - 401
  • [26] A method of noise model identification based on M-series
    Li Huijun
    Wang Qigang
    Ji Gang
    Ma Zengliang
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 2, 2007, : 28 - +
  • [27] Forecasting chaotic time series of exchange rate based on nonlinear autoregressive model
    Jiang, Chuanjin
    Song, Fugen
    2ND IEEE INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER CONTROL (ICACC 2010), VOL. 5, 2010, : 238 - 241
  • [28] T-S Fuzzy Model Identification With a Gravitational Search-Based Hyperplane Clustering Algorithm
    Li, Chaoshun
    Zhou, Jianzhong
    Fu, Bo
    Kou, Pangao
    Xiao, Jian
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2012, 20 (02) : 305 - 317
  • [29] Forecasting multidimensional autoregressive time series model with symmetric α-stable noise using artificial neural networks
    Sathe, Aastha M.
    Upadhye, Neelesh S.
    Wylomanska, Agnieszka
    STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (03): : 783 - 805
  • [30] Estimation of the parameters of vector autoregressive moving average (VARMA) time series model with symmetric stable noise
    Aastha M. Sathe
    Raju Chowdhury
    N. S. Upadhye
    International Journal of Advances in Engineering Sciences and Applied Mathematics, 2021, 13 : 206 - 214