Recursive search-based identification algorithms for the exponential autoregressive time series model with coloured noise

被引:6
|
作者
Xu, Huan [1 ]
Ding, Feng [1 ,2 ]
Yang, Erfu [3 ]
机构
[1] Jiangnan Univ, Sch Internet Things Engn, Minist Educ, Key Lab Adv Proc Control Light Ind, Wuxi 214122, Jiangsu, Peoples R China
[2] Qingdao Univ Sci & Technol, Coll Automat & Elect Engn, Qingdao 266061, Peoples R China
[3] Univ Strathclyde, Strathclyde Space Inst, Dept Design Mfg & Engn Management, Space Mechatron Syst Technol Lab, Glasgow G1 1XJ, Lanark, Scotland
来源
IET CONTROL THEORY AND APPLICATIONS | 2020年 / 14卷 / 02期
基金
中国国家自然科学基金;
关键词
gradient methods; recursive estimation; time series; parameter estimation; least squares approximations; stochastic processes; autoregressive moving average processes; MI-ESG algorithm; parameter estimation accuracy; appropriate innovation length; forgetting factor; unknown parameters; ExpARMA model; recursive search-based identification algorithms; exponential autoregressive time series model; coloured noise; recursive parameter estimation problems; nonlinear exponential autoregressive model; average noise; gradient search; extended stochastic gradient algorithm; optimal step-size; multiinnovation identification theory; multiinnovation ESG algorithm; PARAMETER-ESTIMATION ALGORITHM; STATE-SPACE SYSTEM; NONLINEAR-SYSTEMS; DESIGN; SPEED;
D O I
10.1049/iet-cta.2019.0429
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study focuses on the recursive parameter estimation problems for the non-linear exponential autoregressive model with moving average noise (the ExpARMA model for short). By means of the gradient search, an extended stochastic gradient (ESG) algorithm is derived. Considering the difficulty of determining the step-size in the ESG algorithm, a numerical approach is proposed to obtain the optimal step-size. In order to improve the parameter estimation accuracy, the authors employ the multi-innovation identification theory to develop a multi-innovation ESG (MI-ESG) algorithm for the ExpARMA model. Introducing a forgetting factor into the MI-ESG algorithm, the parameter estimation accuracy can be further improved. With an appropriate innovation length and forgetting factor, the variant of the MI-ESG algorithm is effective to identify all the unknown parameters of the ExpARMA model. A simulation example is provided to test the proposed algorithms.
引用
收藏
页码:262 / 270
页数:9
相关论文
共 50 条
  • [1] Fitting the exponential autoregressive model through recursive search
    Xu, Huan
    Wan, Lijuan
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (11): : 5801 - 5818
  • [2] An Exponential Autoregressive Time Series Model for Complex Data
    Hesamian, Gholamreza
    Torkian, Faezeh
    Johannssen, Arne
    Chukhrova, Nataliya
    MATHEMATICS, 2023, 11 (19)
  • [3] Parameter estimation for an exponential autoregressive time series model by the Newton search and multi-innovation theory
    Xu, Huan
    Ding, Feng
    Gan, Min
    Alsaedi, Ahmed
    Hayat, Tasawar
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2021, 52 (12) : 2630 - 2645
  • [4] Two-stage recursive identification algorithms for a class of nonlinear time series models with colored noise
    Xu, Huan
    Ding, Feng
    Gan, Min
    Yang, Erfu
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2020, 30 (17) : 7766 - 7782
  • [5] Modeling a nonlinear process using the exponential autoregressive time series model
    Xu, Huan
    Ding, Feng
    Yang, Erfu
    NONLINEAR DYNAMICS, 2019, 95 (03) : 2079 - 2092
  • [6] Estimation of the exponential autoregressive time series model by using the genetic algorithm
    Shi, Z
    Aoyama, H
    JOURNAL OF SOUND AND VIBRATION, 1997, 205 (03) : 309 - 321
  • [7] Modeling a nonlinear process using the exponential autoregressive time series model
    Huan Xu
    Feng Ding
    Erfu Yang
    Nonlinear Dynamics, 2019, 95 : 2079 - 2092
  • [8] A NEW AUTOREGRESSIVE TIME-SERIES MODEL IN EXPONENTIAL VARIABLES (NEAR(1))
    LAWRANCE, AJ
    LEWIS, PAW
    ADVANCES IN APPLIED PROBABILITY, 1981, 13 (04) : 826 - 845
  • [9] Parameter identification for solar cell models using harmony search-based algorithms
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    SOLAR ENERGY, 2012, 86 (11) : 3241 - 3249
  • [10] Data filtering-based recursive identification for an exponential autoregressive moving average model by using the multi-innovation theory
    Xu, Huan
    Ma, Fengying
    Ding, Feng
    Xu, Ling
    Alsaedi, Ahmed
    Hayat, Tasawar
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (17): : 2526 - 2534