Besov class via heat semigroup on Dirichlet spaces III: BV functions and sub-Gaussian heat kernel estimates

被引:18
作者
Alonso-Ruiz, Patricia [1 ]
Baudoin, Fabrice [2 ]
Chen, Li [3 ]
Rogers, Luke [2 ]
Shanmugalingam, Nageswari [4 ]
Teplyaev, Alexander [2 ]
机构
[1] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[3] Louisiana State Univ, Dept Math, Lockett Hall, Baton Rouge, LA 70803 USA
[4] Univ Cincinnati, Dept Math Sci, POB 210025, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
31C25; 26A45; 31E05; SELF-SIMILAR TILINGS; BROWNIAN-MOTION; ISOPERIMETRIC-INEQUALITIES; POINCARE INEQUALITIES; SIERPINSKI GASKET; ENERGY MEASURES; FORMS; STABILITY; PRODUCTS; FRACTALS;
D O I
10.1007/s00526-021-02041-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With a view toward fractal spaces, by using a Korevaar-Schoen space approach, we introduce the class of bounded variation (BV) functions in the general framework of strongly local Dirichlet spaces with a heat kernel satisfying sub-Gaussian estimates. Under a weak Bakry-Emery curvature type condition, which is new in this setting, this BV class is identified with a heat semigroup based Besov class. As a consequence of this identification, properties of BV functions and associated BV measures are studied in detail. In particular, we prove co-area formulas, global L1 Sobolev embeddings and isoperimetric inequalities. It is shown that for nested fractals or their direct products the BV class we define is dense in L1. The examples of the unbounded Vicsek set, unbounded Sierpinski gasket and unbounded Sierpinski carpet are discussed.
引用
收藏
页数:38
相关论文
共 83 条
[1]  
Alonso-Ruiz P., 2020, ARXIV191013330
[2]  
Alonso-Ruiz P., 2021, BESOV CLASS VIA HEAT
[3]  
Alonso-Ruiz P., 2021, BESOV CLASS VIA HEAT
[4]   Besov class via heat semigroup on Dirichlet spaces II: BV functions and Gaussian heat kernel estimates [J].
Alonso-Ruiz, Patricia ;
Baudoin, Fabrice ;
Chen, Li ;
Rogers, Luke ;
Shanmugalingam, Nageswari ;
Teplyaev, Alexander .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (03)
[5]  
Ambrosio L., 2000, Oxford Mathematical Monographs, pxviii+434
[6]   Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :289-391
[7]  
[Anonymous], 2012, MEM AM MATH SOC, V216, P1
[8]  
[Anonymous], 2003, Contemp. Math., V338, P11, DOI DOI 10.1090/CONM/338/06069
[9]   A new fractal dimension: The topological Hausdorff dimension [J].
Balka, Richard ;
Buczolich, Zoltan ;
Elekes, Marton .
ADVANCES IN MATHEMATICS, 2015, 274 :881-927
[10]   Manifolds and graphs with slow heat kernel decay [J].
Barlow, M ;
Coulhon, T ;
Grigor'yan, A .
INVENTIONES MATHEMATICAE, 2001, 144 (03) :609-649