Construction of sparse graphs with prescribed circular colorings

被引:8
作者
Nesetril, J
Zhu, XD
机构
[1] Charles Univ, Fac Math & Phys, Dept Math Appl, CR-11800 Prague 1, Czech Republic
[2] Natl Sun Yat Sen Univ, Dept Math Appl, Kaohsiung 80424, Taiwan
关键词
D O I
10.1016/S0012-365X(00)00246-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper constructively proves the following result: Suppose that k greater than or equal to 3d - 2, (k,d)= 1, A is a finite set and f(1), f(2),...,f(n) are mappings from A to {0, 1,...,k - 1}. Then, for any integer I, there is a graph G = (V,E) of girth at least l with A subset of V, such that G has exactly n (k,d)-colorings (up to a permutation of the colors) g(1), g(2),..., g(n), and each g, is an extension of f(i). This result generalizes a result of Muller who proved this for k-colorings. Note that for n = 1, the method presented in this paper gives a construction of uniquely (k,d)-colorable graphs. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:277 / 291
页数:15
相关论文
共 19 条
[1]   A NOTE ON THE STAR CHROMATIC NUMBER [J].
BONDY, JA ;
HELL, P .
JOURNAL OF GRAPH THEORY, 1990, 14 (04) :479-482
[2]  
Erdos P., 1959, CAN J MATH, V11, P34
[3]   APPLICATIONS OF PRODUCT COLORING [J].
GREENWELL, D ;
LOVASZ, L .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1974, 25 (3-4) :335-340
[4]  
Jensen T. R., 1995, Graph Coloring Problems
[5]   AHYPERGRAPH-FREE CONSTRUCTION OF HIGHLY CHROMATIC-GRAPHS WITHOUT SHORT CYCLES [J].
KRIZ, I .
COMBINATORICA, 1989, 9 (02) :227-229
[6]  
LAROSE B, 1999, UNPUB STRONGLY RIGID
[7]  
LOVASZ L, 1966, ACTA MATH ACAD SCI H, V17, P61
[8]   COLORINGS OF GRAPHS WITHOUT SHORT CYCLES [J].
MULLER, V .
DISCRETE MATHEMATICS, 1979, 26 (02) :165-176
[9]  
MULLER V, 1975, RECENT ADV GRAPH THE
[10]   SHORT PROOF OF THE EXISTENCE OF HIGHLY CHROMATIC HYPERGRAPHS WITHOUT SHORT CYCLES [J].
NESETRIL, J ;
RODL, V .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (02) :225-227