NON-INTEGRABILITY OF THE DEGENERATE CASES OF THE SWINGING ATWOOD'S MACHINE USING HIGHER ORDER VARIATIONAL EQUATIONS

被引:7
作者
Martinez, Regina [1 ]
Simo, Carles [2 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
[2] Univ Barcelona, Dept Matemat Aplicada & Anal, E-08007 Barcelona, Spain
关键词
Non-integrability criteria; Swinging Atwood Machine; differential Galois theory; higher order variationals; HAMILTONIAN-SYSTEMS; INTEGRABILITY;
D O I
10.3934/dcds.2011.29.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Non-integrability criteria, based on differential Galois theory and requiring the use of higher order variational equations (VE(k)), are applied to prove the non-integrability of the Swinging Atwood's Machine for values of the parameter which can not be decided using first order variational equations (VE(1)).
引用
收藏
页码:1 / 24
页数:24
相关论文
共 16 条
[1]  
[Anonymous], 1992, HDB IMPEDANCE FUNCTI
[2]  
[Anonymous], 2001, Methods and Appl. Anal.
[3]  
Batut C., USERS GUIDE PARI GP
[4]   SWINGING ATWOOD MACHINE - INTEGRABILITY AND DYNAMICS [J].
CASASAYAS, J ;
NUNES, A ;
TUFILLARO, N .
JOURNAL DE PHYSIQUE, 1990, 51 (16) :1693-1702
[5]  
MARTINET J, COMPUTER ALGEBRA DIF, P117
[6]   Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples [J].
Martinez, R. ;
Simo, C. .
REGULAR & CHAOTIC DYNAMICS, 2009, 14 (03) :323-348
[7]  
MARTINEZ R, 2010, EFFICIENT NUMERICAL
[8]  
Morales-Ruiz J.J., 1999, Differential Galois Theory and Non-Integrability of Hamiltonian Systems
[9]  
Morales-Ruiz J.J., 2001, Methods Appl. Anal., V8, P33
[10]   Algebraic proof of the non-integrability of Hill's problem [J].
Morales-Ruiz, JJ ;
Simó, C ;
Simon, S .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :1237-1256