Noncommutativity and discrete physics

被引:22
作者
Kauffman, LH [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
来源
PHYSICA D | 1998年 / 120卷 / 1-2期
基金
美国国家科学基金会;
关键词
discrete; Leibniz rule; commutator; Poisson bracket; spin network;
D O I
10.1016/S0167-2789(98)00049-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is an introduction to discrete physics based on a non-commutative calculus of finite differences. This gives a context for the Feynman-Dyson derivation of non-commutative electromagnetism, and for generalizations of this result. The paper discusses these ideas and their relations with quantum groups and topological quantum field theory. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 18 条
[1]  
[Anonymous], 1971, COMBINATORIAL MATH I
[2]   WEAVING A CLASSICAL METRIC WITH QUANTUM THREADS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :237-240
[3]  
ATIYAH M, 1990, GEOMETRY PHYSICS KNO
[4]  
Connes A, 1990, NONCOMMUTATIVE GEOME
[5]   State-sum invariants of 4-manifolds [J].
Crane, L ;
Kauffman, LH ;
Yetter, DN .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1997, 6 (02) :177-234
[6]   CLOCK AND CATEGORY - IS QUANTUM-GRAVITY ALGEBRAIC [J].
CRANE, L .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6180-6193
[7]  
CRANE L, 1997, PROPOSAL QUANTUM THE
[8]  
Dirac P. A. M, 1968, Principles of Quantum Mechanics, V4th
[9]  
ETTER T, IN PRESS INT J GEN S
[10]  
FEYNMAN RP, 1965, QUANTUM MECH PATH IN