3D-Printed Wearable Electrochemical Energy Devices

被引:64
作者
Zhang, Shuai [1 ,2 ]
Liu, Yuqing [3 ]
Hao, Junnan [4 ]
Wallace, Gordon G. [1 ,2 ]
Beirne, Stephen [1 ,2 ]
Chen, Jun [1 ,2 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, Wollongong, NSW 2500, Australia
[2] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Wollongong, NSW 2500, Australia
[3] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Device, Chengdu 610054, Peoples R China
[4] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2500, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
3D printing; batteries; supercapacitors; thermoelectrochemical cell; wearable electrochemical energy devices; NANOTUBE COMPOSITE ELECTRODES; CARBON-NANOTUBE; MICRO-SUPERCAPACITORS; GRAPHENE OXIDE; THERMOELECTRIC GENERATORS; CONDUCTING POLYMERS; STORAGE; HEAT; LITHOGRAPHY; PERFORMANCE;
D O I
10.1002/adfm.202103092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Emerging markets for wearable electronics have stimulated a rapidly growing demand for the commercialization of flexible and reliable energy storage and conversion units (including batteries, supercapacitors, and thermoelectrochemical cells). 3D printing, a rapidly growing suite of fabrication technologies, is extensively used in the above-mentioned energy-related areas owing to its relatively low cost, freedom of design, and controllable, reproducible prototyping capability. However, there remain challenges in processable ink formulation and accurate material/device design. By summarizing the recent progress in 3D-printed wearable electrochemical energy devices and discussing the current limitations and future perspectives, this article is expected to serve as a reference for the scalable fabrication of advanced energy systems via 3D printing.
引用
收藏
页数:33
相关论文
共 169 条
[31]   3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel [J].
Habib, Ahasan ;
Sathish, Venkatachalem ;
Mallik, Sanku ;
Khoda, Bashir .
MATERIALS, 2018, 11 (03)
[32]   Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries [J].
Hao, Junnan ;
Li, Xiaolong ;
Zeng, Xiaohui ;
Li, Dan ;
Mao, Jianfeng ;
Guo, Zaiping .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) :3917-3949
[33]   An In-Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Zn-Ion Batteries [J].
Hao, Junnan ;
Li, Bo ;
Li, Xiaolong ;
Zeng, Xiaohui ;
Zhang, Shilin ;
Yang, Fuhua ;
Liu, Sailin ;
Li, Dan ;
Wu, Chao ;
Guo, Zaiping .
ADVANCED MATERIALS, 2020, 32 (34)
[34]   Designing Dendrite-Free Zinc Anodes for Advanced Aqueous Zinc Batteries [J].
Hao, Junnan ;
Li, Xiaolong ;
Zhang, Shilin ;
Yang, Fuhua ;
Zeng, Xiaohui ;
Zhang, Shuai ;
Bo, Guyue ;
Wang, Chunsheng ;
Guo, Zaiping .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (30)
[35]   Designing a hybrid electrode toward high energy density with a staged Li+ and PF6- deintercalation/intercalation mechanism [J].
Hao, Junnan ;
Yang, Fuhua ;
Zhang, Shilin ;
He, Hanna ;
Xia, Guanglin ;
Liu, Yajie ;
Didier, Christophe ;
Liu, Tongchao ;
Pang, Wei Kong ;
Peterson, Vanessa K. ;
Lu, Jun ;
Guo, Zaiping .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (06) :2815-2823
[36]   Toward High-Performance Hybrid Zn-Based Batteries via Deeply Understanding Their Mechanism and Using Electrolyte Additive [J].
Hao, Junnan ;
Long, Jun ;
Li, Bo ;
Li, Xiaolong ;
Zhang, Shilin ;
Yang, Fuhua ;
Zeng, Xiaohui ;
Yang, Zhanhong ;
Pang, Wei Kong ;
Guo, Zaiping .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (34)
[37]   Heterostructure Manipulation via in Situ Localized Phase Transformation for High-Rate and Highly Durable Lithium Ion Storage [J].
Hao, Junnan ;
Zhang, Jian ;
Xia, Guanglin ;
Liu, Yajie ;
Zheng, Yang ;
Zhang, Wenchao ;
Tang, Yongbing ;
Pang, Wei Kong ;
Guo, Zaiping .
ACS NANO, 2018, 12 (10) :10430-10438
[38]   Stretchable supercapacitor based on a cellular structure [J].
He, Sisi ;
Cao, Jingyu ;
Xie, Songlin ;
Deng, Jue ;
Gao, Qiang ;
Qiu, Longbin ;
Zhang, Jing ;
Wang, Lie ;
Hu, Yajie ;
Peng, Huisheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (26) :10124-10129
[39]   Research on the printability of hydrogels in 3D bioprinting [J].
He, Yong ;
Yang, FeiFei ;
Zhao, HaiMing ;
Gao, Qing ;
Xia, Bing ;
Fu, JianZhong .
SCIENTIFIC REPORTS, 2016, 6
[40]   Fabrication of Polydimethylsiloxane films with special surface wettability by 3D printing [J].
He, Zhoukun ;
Chen, Yanqiu ;
Yang, Jian ;
Tang, Changyu ;
Lv, Juan ;
Liu, Yu ;
Mei, Jun ;
Lau, Woon-ming ;
Hui, David .
COMPOSITES PART B-ENGINEERING, 2017, 129 :58-65