3D-Printed Wearable Electrochemical Energy Devices

被引:64
作者
Zhang, Shuai [1 ,2 ]
Liu, Yuqing [3 ]
Hao, Junnan [4 ]
Wallace, Gordon G. [1 ,2 ]
Beirne, Stephen [1 ,2 ]
Chen, Jun [1 ,2 ]
机构
[1] Univ Wollongong, Intelligent Polymer Res Inst, Wollongong, NSW 2500, Australia
[2] Univ Wollongong, ARC Ctr Excellence Electromat Sci, Wollongong, NSW 2500, Australia
[3] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Device, Chengdu 610054, Peoples R China
[4] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Wollongong, NSW 2500, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
3D printing; batteries; supercapacitors; thermoelectrochemical cell; wearable electrochemical energy devices; NANOTUBE COMPOSITE ELECTRODES; CARBON-NANOTUBE; MICRO-SUPERCAPACITORS; GRAPHENE OXIDE; THERMOELECTRIC GENERATORS; CONDUCTING POLYMERS; STORAGE; HEAT; LITHOGRAPHY; PERFORMANCE;
D O I
10.1002/adfm.202103092
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Emerging markets for wearable electronics have stimulated a rapidly growing demand for the commercialization of flexible and reliable energy storage and conversion units (including batteries, supercapacitors, and thermoelectrochemical cells). 3D printing, a rapidly growing suite of fabrication technologies, is extensively used in the above-mentioned energy-related areas owing to its relatively low cost, freedom of design, and controllable, reproducible prototyping capability. However, there remain challenges in processable ink formulation and accurate material/device design. By summarizing the recent progress in 3D-printed wearable electrochemical energy devices and discussing the current limitations and future perspectives, this article is expected to serve as a reference for the scalable fabrication of advanced energy systems via 3D printing.
引用
收藏
页数:33
相关论文
共 169 条
[21]   3D Ordered Macroporous MoS2@C Nanostructure for Flexible Li-Ion Batteries [J].
Deng, Zongnan ;
Jiang, Hao ;
Hu, Yanjie ;
Liu, Yu ;
Zhang, Ling ;
Liu, Honglai ;
Li, Chunzhong .
ADVANCED MATERIALS, 2017, 29 (10)
[22]   3D Metal Printing Technology [J].
Duda, Thomas ;
Raghavan, L. Venkat .
IFAC PAPERSONLINE, 2016, 49 (29) :103-110
[23]   Thermo-electrochemical cells for waste heat harvesting - progress and perspectives [J].
Dupont, M. F. ;
MacFarlane, D. R. ;
Pringle, J. M. .
CHEMICAL COMMUNICATIONS, 2017, 53 (47) :6288-6302
[24]   3D printing electronic components and circuits with conductive thermoplastic filament [J].
Flowers, Patrick F. ;
Reyes, Christopher ;
Ye, Shengrong ;
Kim, Myung Jun ;
Wiley, Benjamin J. .
ADDITIVE MANUFACTURING, 2017, 18 :156-163
[25]   3D Printed Graphene Based Energy Storage Devices [J].
Foster, Christopher W. ;
Down, Michael P. ;
Zhang, Yan ;
Ji, Xiaobo ;
Rowley-Neale, Samuel J. ;
Smith, Graham C. ;
Kelly, Peter J. ;
Banks, Craig E. .
SCIENTIFIC REPORTS, 2017, 7
[26]   Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries [J].
Fu, Kun ;
Wang, Yibo ;
Yan, Chaoyi ;
Yao, Yonggang ;
Chen, Yanan ;
Dai, Jiaqi ;
Lacey, Steven ;
Wang, Yanbin ;
Wan, Jiayu ;
Li, Tian ;
Wang, Zhengyang ;
Xu, Yue ;
Hu, Liangbing .
ADVANCED MATERIALS, 2016, 28 (13) :2587-+
[27]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176
[28]   Assessing extraterrestrial regolith material simulants for in-situ resource utilisation based 3D printing [J].
Goulas, Athanasios ;
Binner, Jon G. P. ;
Harris, Russell A. ;
Friel, Ross J. .
APPLIED MATERIALS TODAY, 2017, 6 :54-61
[29]   Conducting polymers in biomedical engineering [J].
Guimard, Nathalie K. ;
Gomez, Natalia ;
Schmidt, Christine E. .
PROGRESS IN POLYMER SCIENCE, 2007, 32 (8-9) :876-921
[30]   Assembled graphene oxide and single-walled carbon nanotube ink for stable supercapacitors [J].
Guo, Shirui ;
Wang, Wei ;
Ozkan, Cengiz S. ;
Ozkan, Mihrimah .
JOURNAL OF MATERIALS RESEARCH, 2013, 28 (07) :918-926