Estimation of the Possibility of Information Transfer Using Optical Vortices in the Presence of a Background Formed by an Array of Randomly Located Dislocations

被引:0
作者
Kanev, F. Yu. [1 ]
Aksenov, V. P. [1 ]
Makenova, N. A. [1 ]
Veretekhin, I. D. [1 ]
机构
[1] Russian Acad Sci, Siberian Branch, VE Zuev Inst Atmospher Opt, Tomsk 634055, Russia
基金
俄罗斯科学基金会;
关键词
optical vortex; singular wavefront point; optical communication line; atmospheric turbulence; TURBULENCE; COMMUNICATION;
D O I
10.1134/S1024856022030046
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A method allowing one to extract an information signal in a beam whose distortions result in the appearance of additional optical vortices in it is developed. The information is also transmitted with the use of a vortex. The investigation is carried out based on numerical experiments. All dislocations in the corresponding model are introduced into the wavefront in the plane of the source aperture and then the radiation propagates under conditions of free diffraction. The optical scheme of the experiment approximately corresponded to an optical communication line in which radiation undergoes considerable distortions in a thin medium layer located near the exit aperture of the laser generator. In this paper, two methods of extracting an information signal on the background of noises are considered and the possibility of using one of them in real communication lines is demonstrated.
引用
收藏
页码:202 / 211
页数:10
相关论文
共 19 条
[1]   The Analysis of Intensity Correlation in Laser Transceiving Systems for Formation of a Cryptographic Key [J].
Aksenov, V. P. ;
Dudorov, V. V. ;
Kolosov, V. V. ;
Pogutsa, Ch. E. ;
Levitskii, M. E. .
ATMOSPHERIC AND OCEANIC OPTICS, 2020, 33 (06) :571-577
[2]  
[АКСЕНОВ ВАЛЕРИЙ ПЕТРОВИЧ Aksenov V.P.], 2020, [Оптика атмосферы и океана, Optika atmosfery i okeana, Optika atmosfery i okeana], V33, P347, DOI 10.15372/AOO20200504
[3]   Optical vortex detector as a basis for a data transfer system: Operational principle, model, and simulation of the influence of turbulence and noise [J].
Aksenov, Valerii P. ;
Izmailov, Igor V. ;
Kanev, Feodor Yu. ;
Poizner, Boris N. .
OPTICS COMMUNICATIONS, 2012, 285 (06) :905-928
[4]   Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J].
Bozinovic, Nenad ;
Yue, Yang ;
Ren, Yongxiong ;
Tur, Moshe ;
Kristensen, Poul ;
Huang, Hao ;
Willner, Alan E. ;
Ramachandran, Siddharth .
SCIENCE, 2013, 340 (6140) :1545-1548
[5]   Free-space optical communications [J].
Chan, Vincent W. S. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2006, 24 (12) :4750-4762
[6]   Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence [J].
Chen, Chunyi ;
Yang, Huamin ;
Tong, Shoufeng ;
Lou, Yan .
OPTICS EXPRESS, 2016, 24 (07) :6959-6975
[7]   Detection of phase singularities with a Shack-Hartmann wavefront sensor [J].
Chen, Mingzhou ;
Roux, Filippus S. ;
Olivier, Jan C. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (07) :1994-2002
[8]   Free-space information transfer using light beams carrying orbital angular momentum [J].
Gibson, G ;
Courtial, J ;
Padgett, MJ ;
Vasnetsov, M ;
Pas'ko, V ;
Barnett, SM ;
Franke-Arnold, S .
OPTICS EXPRESS, 2004, 12 (22) :5448-5456
[9]   OPTICAL VORTICES AND THEIR PROPAGATION [J].
INDEBETOUW, G .
JOURNAL OF MODERN OPTICS, 1993, 40 (01) :73-87
[10]  
Kandidov V. P., 2019, Discrete Fourier Transform: Tutorial