Hypergraph Attention Networks

被引:11
|
作者
Chen, Chaofan [1 ]
Cheng, Zelei [2 ]
Li, Zuotian [3 ]
Wang, Manyi [4 ]
机构
[1] Univ Sci & Technol China, Sch Informat Sci & Technol, Hefei, Peoples R China
[2] Purdue Univ, Dept Comp & Informat Technol, W Lafayette, IN 47907 USA
[3] Carnegie Mellon Univ, Integrated Innovat Inst, Mountain View, CA USA
[4] Beijing Univ Posts & Telecommun, Int Sch, Beijing, Peoples R China
来源
2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020) | 2020年
关键词
Hypergraph; Graph Neural Networks; Attention Module; Object Recognition;
D O I
10.1109/TrustCom50675.2020.00215
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Recently, graph neural networks have achieved great success on the representation learning of the graph-structured data. However, these networks just consider the pairwise connection between nodes which cannot model the complicated connections of data in the real world. Thus, researchers began to pay attention to the hypergraph modeling. In recent years, some hypergraph neural networks have been proposed to aggregate the information of the hypergraph for representation learning. In this paper, we present hypergraph attention networks (HGATs) to encode the high-order data relation in the hypergraph. Specifically, our proposed HGATs consist of two modules: attentive vertex aggregation module and attentive hyperedge aggregation module. These two modules can implicitly assign different aggregation weights to different connected hyperedge/vertex to characterize the complex relations among data. We stack these modules to pass the messages between the hyperedges and vertices to refine the vertex/hyperedge features. Experimental results on the ModelNet40 and NTU2012 datasets show that our proposed HGATs can achieve superior performance for the visual object recognition tasks. Furthermore, we employ our HGAT for multi-view representation learning and better object classification results are achieved.
引用
收藏
页码:1560 / 1565
页数:6
相关论文
共 50 条
  • [1] Hypergraph convolution and hypergraph attention
    Bai, Song
    Zhang, Feihu
    Torr, Philip H. S.
    PATTERN RECOGNITION, 2021, 110
  • [2] Survey on hypergraph neural networks
    Lin J.
    Ye Z.
    Zhao H.
    Li Z.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (02): : 362 - 384
  • [3] Tensorized Hypergraph Neural Networks
    Wang, Maolin
    Zhen, Yaoming
    Pan, Yu
    Zhao, Yao
    Zhuang, Chenyi
    Xu, Zenglin
    Guo, Ruocheng
    Zhao, Xiangyu
    PROCEEDINGS OF THE 2024 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2024, : 127 - 135
  • [4] Hypergraph Position Attention Convolution Networks for 3D Point Cloud Segmentation
    Rong, Yanpeng
    Nong, Liping
    Liang, Zichen
    Huang, Zhuocheng
    Peng, Jie
    Huang, Yiping
    APPLIED SCIENCES-BASEL, 2024, 14 (08):
  • [5] Hypergraph Transformer Neural Networks
    Li, Mengran
    Zhang, Yong
    Li, Xiaoyong
    Zhang, Yuchen
    Yin, Baocai
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (05)
  • [6] Joint Personalized Search and Recommendation with Hypergraph Convolutional Networks
    Thonet, Thibaut
    Renders, Jean-Michel
    Choi, Mario
    Kim, Jinho
    ADVANCES IN INFORMATION RETRIEVAL, PT I, 2022, 13185 : 443 - 456
  • [7] Hypergraph Attribute Attention Network for Community Recommendation
    Li, Kang
    Xi, Wu-Dong
    Xing, Xing-Xing
    Wang, Chang-Dong
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 269 - 278
  • [8] Attention-Based Hypergraph Knowledge Tracing
    Chang, Xilong
    Guo, Xiaojin
    Liang, Kun
    Zhang, Xiankun
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT XIII, ICIC 2024, 2024, 14874 : 480 - 491
  • [9] Self-attention Hypergraph Pooling Network
    Zhao Y.-F.
    Jin F.-S.
    Li R.-H.
    Qin H.-C.
    Cui P.
    Wang G.-R.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (10):
  • [10] Interaction-aware Hypergraph Neural Networks for User Profiling
    Yan, Shaojie
    Zhao, Tao
    Deng, Jinsheng
    2022 IEEE 9TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND ADVANCED ANALYTICS (DSAA), 2022, : 814 - 823