Exponential inequalities for dependent V-statistics via random Fourier features

被引:5
作者
Shen, Yandi [1 ]
Han, Fang [1 ]
Witten, Daniela [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2020年 / 25卷
基金
美国国家科学基金会;
关键词
dependent V-statistics; strong mixing condition; kernel expansion; random Fourier features; U-STATISTICS; MOMENT INEQUALITIES; MISES STATISTICS; STATIONARY; DEGENERATE; BOOTSTRAP; SUMS;
D O I
10.1214/20-EJP411
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish exponential inequalities for a class of V-statistics under strong mixing conditions. Our theory is developed via a novel kernel expansion based on random Fourier features and the use of a probabilistic method. This type of expansion is new and useful for handling many notorious classes of kernels.
引用
收藏
页数:18
相关论文
共 26 条
[1]   Moment inequalities for U-statistics [J].
Adamczak, Radoslaw .
ANNALS OF PROBABILITY, 2006, 34 (06) :2288-2314
[2]   LIMIT-THEOREMS FOR U-PROCESSES [J].
ARCONES, MA ;
GINE, E .
ANNALS OF PROBABILITY, 1993, 21 (03) :1494-1542
[3]   A martingale decomposition for quadratic forms of Markov chains (with applications) [J].
Atchade, Yves F. ;
Cattaneo, Matias D. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (01) :646-677
[4]   Deriving the asymptotic distribution of U- and V-statistics of dependent data using weighted empirical processes [J].
Beutner, Eric ;
Zaehle, Henryk .
BERNOULLI, 2012, 18 (03) :803-822
[5]   A note on exponential inequalities for the distribution tails of canonical von Mises' statistics of dependent observations [J].
Borisov, I. S. ;
Volodko, N. V. .
STATISTICS & PROBABILITY LETTERS, 2015, 96 :287-291
[6]  
Boucheron Stephane, 2013, CONCENTRATION INEQUA
[7]   THE EMPIRICAL PROCESS OF SOME LONG-RANGE DEPENDENT SEQUENCES WITH AN APPLICATION TO U-STATISTICS [J].
DEHLING, H ;
TAQQU, MS .
ANNALS OF STATISTICS, 1989, 17 (04) :1767-1783
[8]  
Dehling H., 2006, Lect. Notes Stat., V187, P65
[9]   Central limit theorem and the bootstrap for U-statistics of strongly mixing data [J].
Dehling, Herold ;
Wendler, Martin .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (01) :126-137
[10]   ON U-STATISTICS AND V MISES STATISTICS FOR WEAKLY DEPENDENT PROCESSES [J].
DENKER, M ;
KELLER, G .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1983, 64 (04) :505-522