A Surface Reconstruction Route to High Productivity and Selectivity in CO2 Electroreduction toward C2+ Hydrocarbons

被引:227
作者
Kibria, Md Golam [1 ,8 ]
Dinh, Cao-Thang [1 ]
Seifitokaldani, Ali [1 ]
De Luna, Phil [2 ]
Burdyny, Thomas [3 ,9 ]
Quintero-Bermudez, Rafael [1 ]
Ross, Michael B. [4 ,5 ]
Bushuyev, Oleksandr S. [1 ]
de Arguer, F. Pelayo Garcia [1 ]
Yang, Peidong [4 ,5 ,6 ,7 ]
Sinton, David [3 ]
Sargen, Edward H. [1 ]
机构
[1] Univ Toronto, Dept Elect & Comp Engn, 10 Kings Coll Rd, Toronto, ON M5S 3G4, Canada
[2] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St, Toronto, ON M5S 3E4, Canada
[3] Univ Toronto, Dept Mech & Ind Engn, S Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[4] Canadian Inst Adv Res, Bioinspired Solar Energy Program, Toronto, ON M5G 1Z8, Canada
[5] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[7] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[8] Univ Calgary, Dept Chem & Petr Engn, 2500 Univ Dr, Calgary, AB T2N 1N4, Canada
[9] Delft Univ Technol, Dept Chem Engn, Mat Energy Convers & Storage, NL-2629 HZ Delft, Netherlands
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会; 加拿大健康研究院;
关键词
CO2; electroreduction; Cu-based catalysts; flow-cells; hydrocarbons; CARBON-DIOXIDE; ELECTROCHEMICAL REDUCTION; COPPER; MORPHOLOGY; INSIGHTS;
D O I
10.1002/adma.201804867
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Electrochemical carbon dioxide reduction (CO2) is a promising technology to use renewable electricity to convert CO2 into valuable carbon-based products. For commercial-scale applications, however, the productivity and selectivity toward multi-carbon products must be enhanced. A facile surface reconstruction approach that enables tuning of CO2-reduction selectivity toward C2+ products on a copper-chloride (CuCl)-derived catalyst is reported here. Using a novel wet-oxidation process, both the oxidation state and morphology of Cu surface are controlled, providing uniformity of the electrode morphology and abundant surface active sites. The Cu surface is partially oxidized to form an initial Cu (I) chloride layer which is subsequently converted to a Cu (I) oxide surface. High C2+ selectivity on these catalysts are demonstrated in an H-cell configuration, in which 73% Faradaic efficiency (FE) for C-2+ products is reached with 56% FE for ethylene (C2H4) and overall current density of 17 mA cm(-2). Thereafter, the method into a flow-cell configuration is translated, which allows operation in a highly alkaline medium for complete suppression of CH4 production. A record C2+ FE of approximate to 84% and a half-cell power conversion efficiency of 50% at a partial current density of 336 mA cm(-2) using the reconstructed Cu catalyst are reported.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Nanomorphology-Enhanced Gas-Evolution Intensifies CO2 Reduction Electrochemistry [J].
Burdyny, Thomas ;
Graham, Percival J. ;
Pang, Yuanjie ;
Cao-Thang Dinh ;
Liu, Min ;
Sargent, Edward H. ;
Sinton, David .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (05) :4031-4040
[2]   What Should We Make with CO2 and How Can We Make It? [J].
Bushuyev, Oleksandr S. ;
De Luna, Phil ;
Cao Thang Dinh ;
Tao, Ling ;
Saur, Genevieve ;
van de lagemaat, Jao ;
Kelley, Shana O. ;
Sargent, Edward H. .
JOULE, 2018, 2 (05) :825-832
[3]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110
[4]   CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface [J].
Dinh, Cao-Thang ;
Burdyny, Thomas ;
Kibria, Md Golam ;
Seifitokaldani, Ali ;
Gabardo, Christine M. ;
de Arquer, F. Pelayo Garcia ;
Kiani, Amirreza ;
Edwards, Jonathan P. ;
De Luna, Phil ;
Bushuyev, Oleksandr S. ;
Zou, Chengqin ;
Quintero-Bermudez, Rafael ;
Pang, Yuanjie ;
Sinton, David ;
Sargent, Edward H. .
SCIENCE, 2018, 360 (6390) :783-787
[5]   Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts [J].
Dutta, Abhijit ;
Rahaman, Motiar ;
Luedi, Nicola C. ;
Broekmann, Peter .
ACS CATALYSIS, 2016, 6 (06) :3804-3814
[6]   Subsurface Oxygen in Oxide-Derived Copper Electrocatalysts for Carbon Dioxide Reduction [J].
Eilert, Andre ;
Cavalca, Filippo ;
Roberts, F. Sloan ;
Osterwalder, Juerg ;
Liu, Chang ;
Favaro, Marco ;
Crumlin, Ethan J. ;
Ogasawara, Hirohito ;
Friebel, Daniel ;
Pettersson, Lars G. M. ;
Nilsson, Anders .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (01) :285-290
[7]   Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2 [J].
Favaro, Marco ;
Xiao, Hai ;
Cheng, Tao ;
Goddard, William A., III ;
Yano, Junko ;
Crumlin, Ethan J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (26) :6706-6711
[8]   Grain-Boundary-Dependent CO2 Electroreduction Activity [J].
Feng, Xiaofeng ;
Jiang, Kaili ;
Fan, Shoushan ;
Kanan, Matthew W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (14) :4606-4609
[9]   Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy [J].
Graves, Christopher ;
Ebbesen, Sune D. ;
Mogensen, Mogens ;
Lackner, Klaus S. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :1-23
[10]   STUDIES OF COPPER VALENCE STATES WITH CU L3 X-RAY-ABSORPTION SPECTROSCOPY [J].
GRIONI, M ;
GOEDKOOP, JB ;
SCHOORL, R ;
DEGROOT, FMF ;
FUGGLE, JC ;
SCHAFERS, F ;
KOCH, EE ;
ROSSI, G ;
ESTEVA, JM ;
KARNATAK, RC .
PHYSICAL REVIEW B, 1989, 39 (03) :1541-1545