Spectral identification of topological domains

被引:48
作者
Chen, Jie [1 ,2 ,3 ]
Hero, Alfred O., III [2 ,4 ,5 ]
Rajapakse, Indika [3 ,6 ]
机构
[1] Northwestern Polytech Univ, CIAIC, Sch Marine Sci & Technol, Xian, Peoples R China
[2] Univ Michigan, Dept Elect Engn & Comp Sci, Sch Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Sch Med, Dept Computat Med & Bioinformat, Ann Arbor, MI USA
[4] Univ Michigan, Dept Biomed Engn, Coll Literature Sci & Arts, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Stat, Coll Literature Sci & Arts, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Math, Coll Literature Sci & Arts, Ann Arbor, MI 48109 USA
关键词
HI-C DATA; FUNCTIONAL-ORGANIZATION; DROSOPHILA GENOME; BINDING SITES; PRINCIPLES; SEGMENTATION; SCALE;
D O I
10.1093/bioinformatics/btw221
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Topological domains have been proposed as the backbone of interphase chromosome structure. They are regions of high local contact frequency separated by sharp boundaries. Genes within a domain often have correlated transcription. In this paper, we present a computational efficient spectral algorithm to identify topological domains from chromosome conformation data (Hi-C data). We consider the genome as a weighted graph with vertices defined by loci on a chromosome and the edge weights given by interaction frequency between two loci. Laplacian-based graph segmentation is then applied iteratively to obtain the domains at the given compactness level. Comparison with algorithms in the literature shows the advantage of the proposed strategy. Results: An efficient algorithm is presented to identify topological domains from the Hi-C matrix. Availability and Implementation: The Matlab source code and illustrative examples are available at http://bionetworks.ccmb.med.umich.edu/
引用
收藏
页码:2151 / 2158
页数:8
相关论文
共 29 条
[1]  
[Anonymous], 1992, Numerical Methods for Large Eigenvalue Problems
[2]  
[Anonymous], 1953, Journal of the Royal Statistical Society
[3]   THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA [J].
ANSCOMBE, FJ .
BIOMETRIKA, 1948, 35 (3-4) :246-254
[4]   Intra- and inter-chromosomal interactions correlate with CTCF binding genome wide [J].
Botta, Marco ;
Haider, Syed ;
Leung, Ian X. Y. ;
Lio, Pietro ;
Mozziconacci, Julien .
MOLECULAR SYSTEMS BIOLOGY, 2010, 6
[5]   Revealing Long-Range Interconnected Hubs in Human Chromatin Interaction Data Using Graph Theory [J].
Boulos, R. E. ;
Arneodo, A. ;
Jensen, P. ;
Audit, B. .
PHYSICAL REVIEW LETTERS, 2013, 111 (11)
[6]   Functional implications of genome topology [J].
Cavalli, Giacomo ;
Misteli, Tom .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (03) :290-299
[7]   Functional organization of the human 4D Nucleome [J].
Chen, Haiming ;
Chen, Jie ;
Muir, Lindsey A. ;
Ronquist, Scott ;
Meixner, Walter ;
Ljungman, Mats ;
Ried, Thomas ;
Smale, Stephen ;
Rajapakse, Indika .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (26) :8002-8007
[8]   Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids [J].
Chen, Haiming ;
Comment, Nicholas ;
Chen, Jie ;
Ronquist, Scott ;
Hero, Alfred ;
Ried, Thomas ;
Rajapakse, Indika .
NUCLEUS, 2015, 6 (01) :55-65
[9]  
Chung F. R., 1997, SPECTRAL GRAPH THEOR, V91
[10]   Topological domains in mammalian genomes identified by analysis of chromatin interactions [J].
Dixon, Jesse R. ;
Selvaraj, Siddarth ;
Yue, Feng ;
Kim, Audrey ;
Li, Yan ;
Shen, Yin ;
Hu, Ming ;
Liu, Jun S. ;
Ren, Bing .
NATURE, 2012, 485 (7398) :376-380