Once reinforced random walk on Z x Γ

被引:0
作者
Kious, Daniel [1 ]
Schapira, Bruno [2 ]
Singh, Arvind [3 ]
机构
[1] Univ Bath, Dept Math Sci, Bath BA2 7AY, Avon, England
[2] Aix Marseille Univ, I2M, Cent Marseille, CNRS,UMR 7373, F-13453 Marseille, France
[3] Univ Paris Sud, Lab Math, F-91405 Orsay, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2021年 / 57卷 / 04期
关键词
Recurrence; Reinforced random walk; Self-interacting random walk; Shape theorem; JUMP PROCESS;
D O I
10.1214/21-AIHP1151
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We revisit Vervoort's unpublished paper (Vervoort (2002)) on the once reinforced random walk, and prove that this process is recurrent on any graph of the form Z x Gamma, with F a finite graph, for sufficiently large reinforcement parameter. We also obtain a shape theorem for the set of visited sites, and show that the fluctuations around this shape are of polynomial order. The proof involves sharp general estimates on the time spent on subgraphs of the ambiant graph which might be of independent interest.
引用
收藏
页码:2219 / 2242
页数:24
相关论文
共 22 条
[1]   LOCALIZATION FOR LINEARLY EDGE REINFORCED RANDOM WALKS [J].
Angel, Omer ;
Crawford, Nicholas ;
Kozma, Gady .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (05) :889-921
[2]  
Basdevant A.-L., UNPUB
[3]  
COLLEVECCHIO A., 2006, Ann. Probab., V34, P870, DOI [10.1214/009117905000000837, DOI 10.1214/009117905000000837]
[4]   The Branching-Ruin Number and the Critical Parameter of Once-Reinforced Random Walk on Trees [J].
Collevecchio, Andrea ;
Kious, Daniel ;
Sidoravicius, Vladas .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2020, 73 (01) :210-236
[5]   The branching-ruin number as critical parameter of random processes on trees [J].
Collevecchio, Andrea ;
Cong Bang Huynh ;
Kious, Daniel .
ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
[6]   On the speed of once-reinforced biased random walk on trees [J].
Collevecchio, Andrea ;
Holmes, Mark ;
Kious, Daniel .
ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
[7]  
COPPERSMITH D, 1986, RANDOM WALKS R UNPUB
[8]   REINFORCED RANDOM-WALK [J].
DAVIS, B .
PROBABILITY THEORY AND RELATED FIELDS, 1990, 84 (02) :203-229
[9]   Transience of Edge-Reinforced Random Walk [J].
Disertori, Margherita ;
Sabot, Christophe ;
Tarres, Pierre .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 339 (01) :121-148
[10]  
Doyle P. G., 1984, RANDOM WALKELECT N, V22