On the inviscid limit for a fluid with a concentrated vorticity

被引:38
作者
Marchioro, C [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
D O I
10.1007/s002200050413
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the time evolution of a viscous incompressible fluid in R-2 when the initial vorticity is sharply concentrated in N regions of diameter epsilon. We prove that in the zero viscosity limit it converges as epsilon vanishes to the inviscid fluid and in particular to the point vortex system.
引用
收藏
页码:53 / 65
页数:13
相关论文
共 23 条
[1]  
BEALE JT, 1981, MATH COMPUT, V37, P243, DOI 10.1090/S0025-5718-1981-0628693-0
[2]   Navier-Stokes equations on an exterior circular domain: construction of the solution and the zero viscosity limit [J].
Caflisch, R ;
Sammartino, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 324 (08) :861-866
[3]  
Chemin JY, 1996, COMMUN PART DIFF EQ, V21, P1771
[4]  
Constantin P, 1996, INDIANA U MATH J, V45, P67
[5]   INVISCID LIMIT FOR VORTEX PATCHES [J].
CONSTANTIN, P ;
WU, JH .
NONLINEARITY, 1995, 8 (05) :735-742
[6]  
Helmholtz H., 1858, PHILOS MAG, V55, P25, DOI DOI 10.1080/14786446708639824
[7]  
Kato T., 1972, Journal of Functional Analysis, V9, P296, DOI 10.1016/0022-1236(72)90003-1
[8]  
Kirchhoff GR., 1876, VORLESUNGEN MATH PHY
[9]   ON THE VANISHING VISCOSITY LIMIT FOR 2-DIMENSIONAL NAVIER-STOKES EQUATIONS WITH SINGULAR INITIAL DATA [J].
MARCHIORO, C .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (06) :463-470