On Sobolev Classes Containing Solutions to Fokker-Planck-Kolmogorov Equations

被引:0
作者
Bogachev, V. I. [1 ,2 ,3 ]
Popova, S. N. [1 ]
Shaposhnikov, S. V. [1 ,2 ,3 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119991, Russia
[2] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[3] St Tikhons Orthodox Univ, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
DIFFERENTIAL-OPERATORS; ELLIPTIC-EQUATIONS; INVARIANT-MEASURES; REGULARITY; INEQUALITY;
D O I
10.1134/S1064562418060273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this paper answers negatively a long-standing question and shows that a density of a probability measure satisfying the Fokker-Planck-Kolmogorov equation with a drift integrable with respect to this density can fail to belong to the Sobolev class W-1,W-1((d)). There is also a version of this result for densities with respect to Gaussian measures. On the other hand, we prove that the solution density belongs to certain fractional Sobolev classes.
引用
收藏
页码:498 / 501
页数:4
相关论文
共 15 条
[1]   Elliptic and parabolic equations for measures [J].
Bogachev, V. I. ;
Krylov, N. V. ;
Roeckner, M. .
RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (06) :973-1078
[2]  
BOGACHEV V. I., 2015, Mathematical Surveys and Monographs, V207, DOI [10.1090/surv/207, DOI 10.1090/SURV/207]
[3]   REGULARITY OF INVARIANT-MEASURES ON FINITE AND INFINITE-DIMENSIONAL SPACES AND APPLICATIONS [J].
BOGACHEV, VI ;
ROCKNER, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :168-223
[4]   On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions [J].
Bogachev, VI ;
Krylov, NV ;
Röckner, M .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (11-12) :2037-2080
[5]   Elliptic equations for measures:: Regularity and global bounds of densities [J].
Bogachev, Vladimir I. ;
Krylov, Nicolai V. ;
Rockner, Michael .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (06) :743-757
[6]   Integrability and continuity of solutions to double divergence form equations [J].
Bogachev, Vladimir I. ;
Shaposhnikov, Stanislav V. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2017, 196 (05) :1609-1635
[7]  
Bourgain J, 2007, J EUR MATH SOC, V9, P277
[8]  
CHUNG LO, 1983, P AM MATH SOC, V88, P531
[9]   A new approach to counterexamples to L1 estimates:: Korn's inequality, geometric rigidity, and regularity for gradients of separately convex functions [J].
Conti, S ;
Faraco, D ;
Maggi, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 175 (02) :287-300
[10]  
DACOROGNA B., 2003, Rend. Mat. Acc. Lincei, V14, P239