Extreme terahertz electric-field enhancement in high-Q photonic crystal slab cavity with nanoholes

被引:7
作者
Lu, Qijing [1 ]
Chen, Xiaogang [1 ]
Zou, Chang-Ling [2 ]
Xie, Shusen [1 ]
机构
[1] Fujian Normal Univ, Prov Key Lab Photon Technol, Inst Laser & Optoelect Technol, Key Lab Optoelect Sci & Technol Med,Minist Educ, Fuzhou 350007, Fujian, Peoples R China
[2] Univ Sci & Technol China, Chinese Acad Sci, Key Lab Quantum Informat, Sch Phys, Hefei 230026, Anhui, Peoples R China
来源
OPTICS EXPRESS | 2018年 / 26卷 / 23期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
WAVE-GUIDE; SPECTROSCOPY; LIGHT; THZ; CONFINEMENT; RESONANCES; DESIGN;
D O I
10.1364/OE.26.030851
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A one-dimensional photonic-crystal (PC) cavity with nanoholes is proposed for extreme enhancement of terahertz (THz) electric fields using the electromagnetic (EM) boundary conditions. Both slot (for the perpendicular component of the electric displacement field) and anti-slot (for the parallel component of the electric field) effects contribute to the considerable field enhancement. The EM energy density can be enhanced by a factor of (epsilon(h)/epsilon(l))(2) in the high-refractive-index material, where epsilon(h) and epsilon(l) are the permittivities of the high- and low-refractive-index materials, respectively. Correspondingly, the mode volume can be reduced by a factor of 288, compared with a conventional THz PC cavity, and is three orders of magnitude smaller than the diffraction limitation. Further, the proposed THz cavity design also supports modes with high quality factors (Q) > 10(4) , which induces strong Purcell enhancement by a factor exceeding 10(6). Our THz cavity design is feasible and attractive for experimental demonstrations, because the semiconductor layer in which the EM is maximized can naturally be filled with quantum-engineered active materials. Thus, the proposed design can possibly be used to develop room-temperature coherent THz radiation sources. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:30851 / 30861
页数:11
相关论文
共 41 条
  • [1] Guiding and confining light in void nanostructure
    Almeida, VR
    Xu, QF
    Barrios, CA
    Lipson, M
    [J]. OPTICS LETTERS, 2004, 29 (11) : 1209 - 1211
  • [2] Demonstration of slot-waveguide structures on silicon nitride/silicon oxide platform
    Barrios, C. A.
    Sanchez, B.
    Gylfason, K. B.
    Griol, A.
    Sohlstrom, H.
    Holgado, M.
    Casquel, R.
    [J]. OPTICS EXPRESS, 2007, 15 (11): : 6846 - 6856
  • [3] Slot-waveguide biochemical sensor
    Barrios, Carlos A.
    Gylfason, Kristinn B.
    Sanchez, Benito
    Griol, Amadeu
    Sohlstroem, H.
    Holgado, M.
    Casquel, R.
    [J]. OPTICS LETTERS, 2007, 32 (21) : 3080 - 3082
  • [4] Detection of deep-subwavelength dielectric layers at terahertz frequencies using semiconductor plasmonic resonators
    Berrier, Audrey
    Albella, Pablo
    Poyli, M. Ameen
    Ulbricht, Ronald
    Bonn, Mischa
    Aizpurua, Javier
    Rivas, Jaime Gomez
    [J]. OPTICS EXPRESS, 2012, 20 (05): : 5052 - 5060
  • [5] Atomic layer lithography of wafer-scale nanogap arrays for extreme confinement of electromagnetic waves
    Chen, Xiaoshu
    Park, Hyeong-Ryeol
    Pelton, Matthew
    Piao, Xianji
    Lindquist, Nathan C.
    Im, Hyungsoon
    Kim, Yun Jung
    Ahn, Jae Sung
    Ahn, Kwang Jun
    Park, Namkyoo
    Kim, Dai-Sik
    Oh, Sang-Hyun
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [6] Terahertz Lasing in Ensemble of Asymmetric Quantum Dots
    Chestnov, Igor Yu.
    Shahnazaryan, Vanik A.
    Alodjants, Alexander P.
    Shelykh, Ivan A.
    [J]. ACS PHOTONICS, 2017, 4 (11): : 2726 - 2737
  • [7] Choi H., 2018, ARXIV180901645V
  • [8] Self-Similar Nanocavity Design with Ultrasmall Mode Volume for Single-Photon Nonlinearities
    Choi, Hyeongrak
    Heuck, Mikkel
    Englund, Dirk
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (22)
  • [9] Probing the Ultimate Limits of Plasmonic Enhancement
    Ciraci, C.
    Hill, R. T.
    Mock, J. J.
    Urzhumov, Y.
    Fernandez-Dominguez, A. I.
    Maier, S. A.
    Pendry, J. B.
    Chilkoti, A.
    Smith, D. R.
    [J]. SCIENCE, 2012, 337 (6098) : 1072 - 1074
  • [10] Terahertz time-domain spectroscopy characterization of the far-infrared absorption and index of refraction of high-resistivity, float-zone silicon
    Dai, JM
    Zhang, JQ
    Zhang, WL
    Grischkowsky, D
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (07) : 1379 - 1386