Tumor propagating cells: drivers of tumor plasticity, heterogeneity, and recurrence

被引:41
作者
Vessoni, Alexandre Teixeira [1 ]
Filippi-Chiela, Eduardo Cremonese [2 ]
Lenz, Guido [3 ,4 ]
Batista, Luis Francisco Zirnberger [1 ,5 ,6 ]
机构
[1] Washington Univ, Sch Med, Dept Med, St Louis, MO 63110 USA
[2] Univ Fed Rio Grande do Sul, Dept Ciencias Morfol, Inst Ciencias Basicas Saude, Porto Alegre, RS, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Biofis, Porto Alegre, RS, Brazil
[4] Univ Fed Rio Grande do Sul, Ctr Biotecnol, Porto Alegre, RS, Brazil
[5] Washington Univ, Sch Med, Dept Dev Biol, St Louis, MO 63110 USA
[6] Washington Univ, Sch Med, Ctr Regenerat Med, St Louis, MO 63110 USA
关键词
CANCER STEM-CELLS; ACUTE MYELOID-LEUKEMIA; INITIATING CELLS; OXIDATIVE-PHOSPHORYLATION; INTRATUMOR HETEROGENEITY; PHENOTYPIC HETEROGENEITY; MESENCHYMAL TRANSITION; CLONAL EVOLUTION; DRUG-RESISTANCE; MELANOMA-CELLS;
D O I
10.1038/s41388-019-1128-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Tumorigenesis is associated with the development of a highly variable pattern of cellular diversity, consequence of genetic and epigenetic diversification, followed by clonal selection and expansion. This process is shaped by the microenvironment and leads to intratumoral heterogeneity, which is characterized by differences between cancer cells in terms of gene expression, phenotypic markers, growth dynamics, and resistance to treatment. Another relevant aspect in intratumor heterogeneity is cell plasticity-the ability of a cell to switch to new identities. In this review, we focus on the mechanisms that regulate cancer cell plasticity within a tumor, and explore the concept of tumor propagating cells, or TPCs, a cancer cell able to propagate/phenocopy the parental tumor and recapitulate tumor heterogeneity. We discuss the influence of the microenvironment and driver mutations on TPCs formation and function, the existence of phenotypically distinct TPC clones within a tumor, the evolution of TPCs with disease progression, and their implications for therapy.
引用
收藏
页码:2055 / 2068
页数:14
相关论文
共 148 条
[1]   Prospective identification of tumorigenic breast cancer cells [J].
Al-Hajj, M ;
Wicha, MS ;
Benito-Hernandez, A ;
Morrison, SJ ;
Clarke, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :3983-3988
[2]   Genetic variegation of clonal architecture and propagating cells in leukaemia [J].
Anderson, Kristina ;
Lutz, Christoph ;
van Delft, Frederik W. ;
Bateman, Caroline M. ;
Guo, Yanping ;
Colman, Susan M. ;
Kempski, Helena ;
Moorman, Anthony V. ;
Titley, Ian ;
Swansbury, John ;
Kearney, Lyndal ;
Enver, Tariq ;
Greaves, Mel .
NATURE, 2011, 469 (7330) :356-+
[3]   Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy [J].
Auffinger, B. ;
Tobias, A. L. ;
Han, Y. ;
Lee, G. ;
Guo, D. ;
Dey, M. ;
Lesniak, M. S. ;
Ahmed, A. U. .
CELL DEATH AND DIFFERENTIATION, 2014, 21 (07) :1119-1131
[4]   Punctuated Evolution of Prostate Cancer Genomes [J].
Baca, Sylvan C. ;
Prandi, Davide ;
Lawrence, Michael S. ;
Mosquera, Juan Miguel ;
Romanel, Alessandro ;
Drier, Yotam ;
Park, Kyung ;
Kitabayashi, Naoki ;
MacDonald, Theresa Y. ;
Ghandi, Mahmoud ;
Van Allen, Eliezer ;
Kryukov, Gregory V. ;
Sboner, Andrea ;
Theurillat, Jean-Philippe ;
Soong, T. David ;
Nickerson, Elizabeth ;
Auclair, Daniel ;
Tewari, Ashutosh ;
Beltran, Himisha ;
Onofrio, Robert C. ;
Boysen, Gunther ;
Guiducci, Candace ;
Barbieri, Christopher E. ;
Cibulskis, Kristian ;
Sivachenko, Andrey ;
Carter, Scott L. ;
Saksena, Gordon ;
Voet, Douglas ;
Ramos, Alex H. ;
Winckler, Wendy ;
Cipicchio, Michelle ;
Ardlie, Kristin ;
Kantoff, Philip W. ;
Berger, Michael F. ;
Gabriel, Stacey B. ;
Golub, Todd R. ;
Meyerson, Matthew ;
Lander, Eric S. ;
Elemento, Olivier ;
Getz, Gad ;
Demichelis, Francesca ;
Rubin, Mark A. ;
Garraway, Levi A. .
CELL, 2013, 153 (03) :666-677
[5]   BRCA1 Suppresses Epithelial-to-Mesenchymal Transition and Stem Cell Dedifferentiation during Mammary and Tumor Development [J].
Bai, Feng ;
Chan, Ho Lam ;
Scott, Alexandria ;
Smith, Matthew D. ;
Fan, Cheng ;
Herschkowitz, Jason I. ;
Perou, Charles M. ;
Livingstone, Alan S. ;
Robbins, David J. ;
Capobianco, Anthony J. ;
Pei, Xin-Hai .
CANCER RESEARCH, 2014, 74 (21) :6161-6172
[6]   Glioma stem cells promote radioresistance by preferential activation of the DNA damage response [J].
Bao, Shideng ;
Wu, Qiulian ;
McLendon, Roger E. ;
Hao, Yueling ;
Shi, Qing ;
Hjelmeland, Anita B. ;
Dewhirst, Mark W. ;
Bigner, Darell D. ;
Rich, Jeremy N. .
NATURE, 2006, 444 (7120) :756-760
[7]   Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer [J].
Bapat, SA ;
Mali, AM ;
Koppikar, CB ;
Kurrey, NK .
CANCER RESEARCH, 2005, 65 (08) :3025-3029
[8]   Self-Renewal Does Not Predict Tumor Growth Potential in Mouse Models of High-Grade Glioma [J].
Barrett, Lindy E. ;
Granot, Zvi ;
Coker, Courtney ;
Lavarone, Antonio ;
Hambardzumyan, Dolores ;
Holland, Eric C. ;
Hyung-song Nam ;
Benezra, Robert .
CANCER CELL, 2012, 21 (01) :11-24
[9]   Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia [J].
Blazek, Ed R. ;
Foutch, Jennifer L. ;
Maki, Guitta .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2007, 67 (01) :1-5
[10]   Human melanoma-initiating cells express neural crest nerve growth factor receptor CD271 [J].
Boiko, Alexander D. ;
Razorenova, Olga V. ;
van de Rijn, Matt ;
Swetter, Susan M. ;
Johnson, Denise L. ;
Ly, Daphne P. ;
Butler, Paris D. ;
Yang, George P. ;
Joshua, Benzion ;
Kaplan, Michael J. ;
Longaker, Michael T. ;
Weissman, Irving L. .
NATURE, 2010, 466 (7302) :133-U155