CHAOS TIME-DOMAIN REFLECTOMETRY FOR FAULT LOCATION ON LIVE WIRES

被引:0
|
作者
Xu, Hang [1 ,2 ]
Li, Jingxia [1 ,2 ]
Liu, Li [1 ,2 ]
Wang, Bingjie [1 ,2 ]
Zhang, Jianguo [1 ,2 ]
Wang, Yuncai [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Key Lab Adv Transducers & Intelligent Control Sys, Minist Educ, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Coll Phys & Optoelect, Inst Optoelect Engn, Taiyuan 030024, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Chaotic signal; high density bipolar of order 3; fault location; live wire; WIRING FAULTS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a chaos time-domain reflectometry (CTDR) for locating faults on live wires. This method uses a chaotic output of an improved Colpitts oscillator as probe signal, and detects wire faults by correlating a duplicate with the echo of the probe signal. Benefiting from the anti-jamming of the correlation function of the wideband chaos, fault location on live wires can be achieved. We experimentally demonstrate the detection for live wires in a digital communication system, in which a type of digital signal named high density bipolar of order 3 (HDB3) is transmitted. The effects of the chaotic probe signal on the bit error rate (BER) of the transmitted HDB3 at different rates are analyzed. Meanwhile, the influences of the backward HDB3 reflected by wiring faults on the signal-noise-ratio (SNR) of CTDR measurement are examined experimentally. The results show that fault detection on live wires is achieved when the power of the chaotic probe signal is about from -24.8 dB to -13.5 dB lower than that of the transmitted digital signal. In this case, the BER is kept less than 3E-10, and the SNR of CTDR is higher than 3 dB. Besides, the auto-correlation properties of the improved Colpitts oscillator at different states are investigated experimentally to explore the suitable chaotic states for the CTDR.
引用
收藏
页码:243 / 250
页数:8
相关论文
共 50 条
  • [41] Computational Brillouin Optical Time-Domain Reflectometry
    Guo, Xinyue
    Zhou, Da-Peng
    Peng, Wei
    AOPC 2023:OPTIC FIBER GYRO, 2023, 12968
  • [42] Time-domain reflectometry module for DSL analyzer
    Opalska, Katarzyna
    Burd, Aleksander
    Owczarek, Tomasz
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2008, 54 (03) : 367 - 375
  • [43] DETERMINATION OF CONDUCTIVITY PROFILES BY TIME-DOMAIN REFLECTOMETRY
    BOLOMEY, JC
    DURIX, C
    LESSELIER, D
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 1979, 27 (02) : 244 - 248
  • [44] AUTOMATION OF OPTICAL TIME-DOMAIN REFLECTOMETRY MEASUREMENTS
    MAIER, FA
    SEEGER, H
    HEWLETT-PACKARD JOURNAL, 1995, 46 (01): : 57 - 62
  • [45] COMPLEMENTARY CORRELATION OPTICAL TIME-DOMAIN REFLECTOMETRY
    SISCHKA, F
    NEWTON, SA
    NAZARATHY, M
    HEWLETT-PACKARD JOURNAL, 1988, 39 (06): : 14 - 21
  • [46] INTERCONNECT CHARACTERIZATION USING TIME-DOMAIN REFLECTOMETRY
    COREY, SD
    YANG, AT
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1995, 43 (09) : 2151 - 2156
  • [47] Measurement of material moisture with time-domain reflectometry
    Stacheder, M
    Kohler, K
    Fundinger, R
    Blume, P
    TECHNISCHES MESSEN, 1997, 64 (11): : 453 - 457
  • [48] Time-domain reflectometry (TDR) in geotechnics: A review
    Benson, CH
    Bosscher, PJ
    NONDESTRUCTIVE AND AUTOMATED TESTING FOR SOIL AND ROCK PROPERTIES, 1999, 1350 : 113 - 136
  • [49] DIRECT DECONVOLUTION SIGNAL IN TIME-DOMAIN REFLECTOMETRY
    ARTACHO, JM
    FORNIESMARQUINA, JM
    LETOSA, J
    GARCIA, M
    BOTTREAU, AM
    IEEE TRANSACTIONS ON MAGNETICS, 1995, 31 (03) : 1610 - 1613
  • [50] Computational Brillouin Optical Time-Domain Reflectometry
    Shu, Dayong
    Guo, Xinyue
    Lv, Tuo
    Zhou, Da-Peng
    Peng, Wei
    Chen, Liang
    Bao, Xiaoyi
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2024, 42 (09) : 3467 - 3473