Actively Tunable Terahertz Switches Based on Subwavelength Graphene Waveguide

被引:23
作者
Guo, Zhongyi [1 ]
Nie, Xiaoru [1 ]
Shen, Fei [1 ]
Zhou, Hongping [1 ]
Zhou, Qingfeng [1 ]
Gao, Jun [1 ]
Guo, Kai [1 ]
机构
[1] Hefei Univ Technol, Sch Comp & Informat, Hefei 230009, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; waveguide; optical switches; OPTICAL LOGIC GATE; PLASMONICS; FABRICATION;
D O I
10.3390/nano8090665
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
As a new field of optical communication technology, on-chip graphene devices are of great interest due to their active tunability and subwavelength scale. In this paper, we systematically investigate optical switches at frequency of 30 THz, including Y-branch (1 x 2), X-branch (2 x 2), single-input three-output (1 x 3), two-input three-output (2 x 3), and two-input four-output (2 x 4) switches. In these devices, a graphene monolayer is stacked on the top of a PMMA (poly methyl methacrylate methacrylic acid) dielectric layer. The optical response of graphene can be electrically manipulated; therefore, the state of each channel can be switched ON and OFF. Numerical simulations demonstrate that the transmission direction can be well manipulated in these devices. In addition, the proposed devices possess advantages of appropriate ON/OFF ratios, indicating the good performance of graphene in terahertz switching. These devices provide a new route toward terahertz optical switching.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[2]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[3]   Atomically Thin Surface Cloak Using Graphene Monolayers [J].
Chen, Pai-Yen ;
Alu, Andrea .
ACS NANO, 2011, 5 (07) :5855-5863
[4]   Graphene Plasmon Waveguiding and Hybridization in Individual and Paired Nanoribbons [J].
Christensen, Johan ;
Manjavacas, Alejandro ;
Thongrattanasiri, Sukosin ;
Koppens, Frank H. L. ;
Javier Garcia de Abajo, F. .
ACS NANO, 2012, 6 (01) :431-440
[5]   Graphene Based Waveguide Polarizers: In-Depth Physical Analysis and Relevant Parameters [J].
de Oliveira, Rafael E. P. ;
de Matos, Christiano J. S. .
SCIENTIFIC REPORTS, 2015, 5
[6]   Spatial and spectral selective characteristics of the plasmonic sensing using metallic nanoslit arrays [J].
Ge, Caiwang ;
Guo, Zhongyi ;
Sun, Yongxuan ;
Shen, Fei ;
Tao, Yifei ;
Zhang, Jingran ;
Li, Rongzhen ;
Luo, Linbao .
OPTICS COMMUNICATIONS, 2016, 359 :393-398
[7]   Graphene-based plasmonic switches at near infrared frequencies [J].
Gomez-Diaz, J. S. ;
Perruisseau-Carrier, J. .
OPTICS EXPRESS, 2013, 21 (13) :15490-15504
[8]   High-Efficiency Visible Transmitting Polarizations Devices Based on the GaN Metasurface [J].
Guo, Zhongyi ;
Xu, Haisheng ;
Guo, Kai ;
Shen, Fei ;
Zhou, Hongping ;
Zhou, Qingfeng ;
Gao, Jun ;
Yin, Zhiping .
NANOMATERIALS, 2018, 8 (05)
[9]   Magneto-optical conductivity in graphene [J].
Gusynin, V. P. ;
Sharapov, S. G. ;
Carbotte, J. P. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (02)
[10]   Improved Slow Light Capacity In Graphene-based Waveguide [J].
Hao, Ran ;
Peng, Xi-Liang ;
Li, Er-Ping ;
Xu, Yang ;
Jin, Jia-Min ;
Zhang, Xian-Min ;
Chen, Hong-Sheng .
SCIENTIFIC REPORTS, 2015, 5