Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data

被引:45
作者
Wang, Robin [1 ,2 ,3 ]
Jiao, Zhicheng [2 ,3 ]
Li Yang [4 ]
Choi, Ji Whae [5 ,6 ]
Xiong, Zeng [1 ]
Halsey, Kasey [5 ,6 ]
Tran, Thi My Linh [5 ,6 ]
Pan, Ian [5 ]
Collins, Scott A. [5 ]
Feng, Xue [7 ]
Wu, Jing [8 ]
Chang, Ken [9 ]
Shi, Lin-Bo [10 ]
Yang, Shuai [1 ]
Yu, Qi-Zhi [11 ]
Liu, Jie [12 ]
Fu, Fei-Xian [13 ]
Jiang, Xiao-Long [14 ]
Wang, Dong-Cui [1 ]
Zhu, Li-Ping [1 ]
Yi, Xiao-Ping [1 ]
Healey, Terrance T. [5 ]
Zeng, Qiu-Hua [15 ]
Liu, Tao [16 ]
Hu, Ping-Feng [17 ]
Huang, Raymond Y. [18 ]
Li, Yi-Hui [19 ]
Sebro, Ronnie A. [2 ,3 ]
Zhang, Paul J. L. [2 ,3 ]
Wang, Jianxin [20 ]
Atalay, Michael K. [5 ]
Liao, Wei-Hua [1 ]
Fan, Yong [2 ,3 ]
Bai, Harrison X. [5 ,6 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Radiol, Changsha, Peoples R China
[2] Univ Penn, Dept Radiol, Philadelphia, PA 19104 USA
[3] Univ Penn, Ctr Biomed Image Computat & Analyt, Philadelphia, PA 19104 USA
[4] Cent South Univ, Xiangya Hosp 2, Dept Neurol, Changsha, Peoples R China
[5] Rhode Isl Hosp, Dept Diagnost Imaging, Providence, RI 02903 USA
[6] Brown Univ, Warren Alpert Med Sch, Providence, RI 02912 USA
[7] Carina Med, Carina, Australia
[8] Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha, Peoples R China
[9] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[10] Yongzhou Cent Hosp, Dept Radiol, Yongzhou, Peoples R China
[11] First Hosp Changsha, Dept Radiol, Changsha, Peoples R China
[12] Changde Second Peoples Hosp, Dept Radiol, Changde, Peoples R China
[13] Yiyang City Ctr Hosp, Dept Radiol, Yiyang, Peoples R China
[14] Univ South China, Affiliated Nan Hua Hosp, Dept Radiol, Hengyang, Peoples R China
[15] Loudi Cent Hosp, Dept Radiol, Loudi, Peoples R China
[16] Brown Univ, Sch Publ Hlth, Providence, RI 02912 USA
[17] Chenzhou Second Peoples Hosp, Dept Radiol, Chenzhou, Peoples R China
[18] Brigham & Womens Hosp, Dept Radiol, 75 Francis St, Boston, MA 02115 USA
[19] Zhuzhou Cent Hosp, Dept Radiol, Zhuzhou, Peoples R China
[20] Cent South Univ, Sch Comp Sci & Engn, Changsha, Peoples R China
基金
美国国家卫生研究院;
关键词
Coronavirus infections; Helical CT; Disease progression; Deep learning; DISEASE;
D O I
10.1007/s00330-021-08049-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives Early recognition of coronavirus disease 2019 (COVID-19) severity can guide patient management. However, it is challenging to predict when COVID-19 patients will progress to critical illness. This study aimed to develop an artificial intelligence system to predict future deterioration to critical illness in COVID-19 patients. Methods An artificial intelligence (AI) system in a time-to-event analysis framework was developed to integrate chest CT and clinical data for risk prediction of future deterioration to critical illness in patients with COVID-19. Results A multi-institutional international cohort of 1,051 patients with RT-PCR confirmed COVID-19 and chest CT was included in this study. Of them, 282 patients developed critical illness, which was defined as requiring ICU admission and/or mechanical ventilation and/or reaching death during their hospital stay. The AI system achieved a C-index of 0.80 for predicting individual COVID-19 patients' to critical illness. The AI system successfully stratified the patients into high-risk and low-risk groups with distinct progression risks (p < 0.0001). Conclusions Using CT imaging and clinical data, the AI system successfully predicted time to critical illness for individual patients and identified patients with high risk. AI has the potential to accurately triage patients and facilitate personalized treatment.
引用
收藏
页码:205 / 212
页数:8
相关论文
共 22 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]   Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial [J].
Cao, Yang ;
Wei, Jia ;
Zou, Liang ;
Jiang, Tiebin ;
Wang, Gaoxiang ;
Chen, Liting ;
Huang, Liang ;
Meng, Fankai ;
Huang, Lifang ;
Wang, Na ;
Zhou, Xiaoxi ;
Luo, Hui ;
Mao, Zekai ;
Chen, Xing ;
Xie, Jungang ;
Liu, Jing ;
Cheng, Hui ;
Zhao, Jianping ;
Huang, Gang ;
Wang, Wei ;
Zhou, Jianfeng .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2020, 146 (01) :137-+
[3]   Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: Evaluation with thin-section CT [J].
Chang, YC ;
Yu, CJ ;
Chang, SC ;
Galvin, JR ;
Liu, HM ;
Hsiao, CH ;
Kuo, PH ;
Chen, KY ;
Franks, TJ ;
Huang, KM ;
Yang, PC .
RADIOLOGY, 2005, 236 (03) :1067-1075
[4]   Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia [J].
Colombi, Davide ;
Bodini, Flavio C. ;
Petrini, Marcello ;
Maffi, Gabriele ;
Morelli, Nicola ;
Milanese, Gianluca ;
Silva, Mario ;
Sverzellati, Nicola ;
Michieletti, Emanuele .
RADIOLOGY, 2020, 296 (02) :E86-E96
[5]   COVID-19 with Different Severities: A Multicenter Study of Clinical Features [J].
Feng, Yun ;
Ling, Yun ;
Bai, Tao ;
Xie, Yusang ;
Huang, Jie ;
Li, Jian ;
Xiong, Weining ;
Yang, Dexiang ;
Chen, Rong ;
Lu, Fangying ;
Lu, Yunfei ;
Liu, Xuhui ;
Chen, Yuqing ;
Li, Xin ;
Li, Yong ;
Summah, Hanssa Dwarka ;
Lin, Huihuang ;
Yan, Jiayang ;
Zhou, Min ;
Lu, Hongzhou ;
Qu, Jieming .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201 (11) :1380-1388
[6]   Early intervention likely improves mortality in COVID-19 infection [J].
Goyal, Daniel K. ;
Mansab, Fatma ;
Iqbal, Amir ;
Bhatti, Sohail .
CLINICAL MEDICINE, 2020, 20 (03) :248-250
[7]   Compassionate Use of Remdesivir for Patients with Severe Covid-19 [J].
Grein, J. ;
Ohmagari, N. ;
Shin, D. ;
Diaz, G. ;
Asperges, E. ;
Castagna, A. ;
Feldt, T. ;
Green, G. ;
Green, M. L. ;
Lescure, F-X ;
Nicastri, E. ;
Oda, R. ;
Yo, K. ;
Quiros-Roldan, E. ;
Studemeister, A. ;
Redinski, J. ;
Ahmed, S. ;
Bernett, J. ;
Chelliah, D. ;
Chen, D. ;
Chihara, S. ;
Cohen, S. H. ;
Cunningham, J. ;
Monforte, A. DArminio ;
Ismail, S. ;
Kato, H. ;
Lapadula, G. ;
L'Her, E. ;
Maeno, T. ;
Majumder, S. ;
Massari, M. ;
Mora-Rillo, M. ;
Mutoh, Y. ;
Nguyen, D. ;
Verweij, E. ;
Zoufaly, A. ;
Osinusi, A. O. ;
DeZure, A. ;
Zhao, Y. ;
Zhong, L. ;
Chokkalingam, A. ;
Elboudwarej, E. ;
Telep, L. ;
Timbs, L. ;
Henne, I ;
Sellers, S. ;
Cao, H. ;
Tan, S. K. ;
Winterbourne, L. ;
Desai, P. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (24) :2327-2336
[8]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[9]  
2-4
[10]   Survival model predictive accuracy and ROC curves [J].
Heagerty, PJ ;
Zheng, YY .
BIOMETRICS, 2005, 61 (01) :92-105