NONCOMPACTNESS OF FOURIER CONVOLUTION OPERATORS ON BANACH FUNCTION SPACES

被引:5
作者
Fernandes, Claudio A. [1 ]
Karlovich, Alexei Y. [1 ]
Karlovich, Yuri, I [2 ]
机构
[1] Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, Ctr Matemat & Aplicacoes, P-2829516 Caparica, Portugal
[2] Univ Autonoma Estado Morelos, Inst Invest Ciencias Basicas & Aplicadas, Ctr Invest Ciencias, AV Univ 1001, Cuernavaca 62209, Morelos, Mexico
关键词
Fourier convolution operator; compactness; Banach function space; Hardy-Littlewood maximal operator; Lebesgue space with Muckenhoupt weight; WEIGHTED NORM INEQUALITIES; MAXIMAL OPERATOR;
D O I
10.1215/20088752-2019-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X(R) be a separable Banach function space such that the Hardy-Littlewood maximal operator M is bounded on X(R) and on its associate space X' (R). Suppose that a is a Fourier multiplier on the space X(R) We show that the Fourier convolution operator W-0(a) with symbol a is compact on the space X(R) if and only if a = 0. This result implies that nontrivial Fourier convolution operators on Lebesgue spaces with Muckenhoupt weights are never compact.
引用
收藏
页码:553 / 561
页数:9
相关论文
共 14 条
[1]  
[Anonymous], 2014, Operator Theory: Advances and Applications, DOI [DOI 10.1007/978-3-0348-0648-0_17, 10.1007/978-3-0348-0648-0_17]
[2]  
Bennett C., 1988, INTERPOLATION OPERAT, V129
[3]  
COIFMAN RR, 1974, STUD MATH, V51, P241
[4]   Weighted norm inequalities for the maximal operator on variable Lebesgue spaces [J].
Cruz-Uribe, D. ;
Fiorenza, A. ;
Neugebauer, C. J. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) :744-760
[5]   THE MAXIMAL OPERATOR ON WEIGHTED VARIABLE LEBESGUE SPACES [J].
Cruz-Uribe, David ;
Diening, Lars ;
Hasto, Peter .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (03) :361-374
[6]  
Duduchava R., 1979, INTEGRAL EQUATIONS F
[7]  
Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA
[8]  
Gohberg I., 1992, OPER THEORY ADV APPL, V54
[9]  
Grafakos L., 2014, Classical Fourier Analysis, Third Edition, Graduate Texts in Mathematics, DOI DOI 10.1007/978-1-4939-1194-3
[10]   When does the norm of a Fourier multiplier dominate its L∞ norm? [J].
Karlovich, Alexei ;
Shargorodsky, Eugene .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 118 (04) :901-941