A high hydrophobicity of membrane plays a vital role in separating organics from dilute solution by pervaporation, which highly contributes to the increase of organics selectivity. Herein, we chose the high-hydrophobic poly[(3,3,3-trifluoropropyl)methylsiloxane] (PTFPMS) material to prepare the pervaporation membrane using a green method for the first time. Within the PTFPMS membrane, the -Si-O- chains imply the hydrophobic nature, and introducing -CF3 groups further enhances the hydrophobicity. The high-efficiency transport pathways are formed in which water will experience a larger diffusion resistance within PTFPMS membrane compared with the conventional polydimethylsiloxane (PDMS) membrane without -CF3 groups. Moreover, considering the great threat of organic solvent to the environment and operators during membrane preparation, a green approach using water instead of organic solvent was employed. Especially, when separating 1 wt% furfural aqueous solution at 80 degrees C, there are 30% of increase in the furfural separation factor (45.6) and an effective increase in furfural flux (328 g m(-2) h(-1)) compared with those of PDMS membrane. Overall, the super-hydrophobic PTFPMS membrane highly improves the feasibility of the downstream processes for recovering the biomass derives furfural.