Constructing the Triple-Phase Boundaries of Integrated Air Electrodes for High-Performance Zn-Air Batteries

被引:24
|
作者
Shang, Wenxu [1 ]
Yu, Wentao [1 ]
Ma, Yanyi [1 ]
He, Yi [1 ]
Zhao, Zhongxi [1 ]
Ni, Meng [2 ,3 ]
Zhao, Hong [4 ]
Tan, Peng [1 ]
机构
[1] Univ Sci & Technol China USTC, Dept Thermal Sci & Energy Engn, Hefei 230026, Anhui, Peoples R China
[2] Hong Kong Polytech Univ, Dept Bldg & Real Estate, Res Inst Sustainable Urban Dev RISUD, Kowloon, Hong Kong 999077, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Smart Energy RISE, Kowloon, Hong Kong 999077, Peoples R China
[4] Foshan Univ, Sch Mat Sci & Energy Engn, Foshan 528011, Guangdong, Peoples R China
关键词
boundary design in air electrodes; electrode fabrication; high-performance zinc-air batteries; HIGH-ENERGY DENSITY; ELECTROCATALYTIC ACTIVITY; ZINC; PROGRESS; OXIDE; CATALYST; EFFICIENCY; NANOSHEETS; SUBSTRATE; CLUSTERS;
D O I
10.1002/admi.202101256
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rechargeable zinc (Zn)-air batteries receive research interest due to the high theoretical energy density, intrinsic safety, and excellent market competition. The design of the triple-phase (solid/liquid/gas) boundaries of the air electrode is the key to excellent performance. Although integrated air electrodes ensure the large active sites, rapid electron and species transport, and good stability during the long-term operation, the massive agglomeration of hydrophobic binder always leads to the reduction of triple-phase boundaries using conventional fabrication strategies. To address this issue, a novel strategy for constructing the triple-phase boundaries of an integrated Co3O4 electrode is proposed through hydrothermal treatment under a high temperature. The ultrasmall hydrophobic particles distribute extremely uniformly in Co3O4 nanowires, which do not cover the electrode surface and create good gas-phase boundaries, leading to a high-performance Zn-air battery with a high discharge voltage of 1.13 V and a low charge voltage of 2.06 V at even 10 mA cm(-2), a high peak power density of 51.7 mW cm(-2), and a small voltage gap increment of only 86 mV after 1000 cycles. This strategy greatly enhances the performance and durability of integrated air electrodes, raising the attention to boundary design for other electrochemical energy conversion and storage devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Triple-phase oxygen electrocatalysis of hollow spherical structures for rechargeable Zn-Air batteries
    Weng, Chen-Chen
    Ren, Jin-Tao
    Wang, Hao-Yu
    Lv, Xian-Wei
    Song, Yue-Jun
    Wang, Yan-Su
    Chen, Lei
    Tian, Wen-Wen
    Yuan, Zhong-Yong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2022, 307
  • [2] Air Electrodes for Flexible and Rechargeable Zn-Air Batteries
    Wang, Xiao Xia
    Yang, Xiaoxuan
    Liu, Hui
    Han, Tao
    Hu, Junhua
    Li, Hongbo
    Wu, Gang
    SMALL STRUCTURES, 2022, 3 (01):
  • [3] Preconstructing Asymmetric Interface in Air Cathodes for High-Performance Rechargeable Zn-Air Batteries
    Liu, Jia-Ning
    Zhao, Chang-Xin
    Ren, Ding
    Wang, Juan
    Zhang, Rui
    Wang, Shu-Hao
    Zhao, Chuan
    Li, Bo-Quan
    Zhang, Qiang
    ADVANCED MATERIALS, 2022, 34 (11)
  • [4] Bifunctional air electrodes for flexible rechargeable Zn-air batteries
    Lang, Xiaoling
    Hu, Zhibiao
    Wang, Caiyun
    CHINESE CHEMICAL LETTERS, 2021, 32 (03) : 999 - 1009
  • [5] Bifunctional air electrodes for flexible rechargeable Zn-air batteries
    Xiaoling Lang
    Zhibiao Hu
    Caiyun Wang
    Chinese Chemical Letters, 2021, 32 (03) : 999 - 1009
  • [6] Advanced Architectures and Relatives of Air Electrodes in Zn-Air Batteries
    Pan, Jing
    Xu, Yang Yang
    Yang, Huan
    Dong, Zehua
    Liu, Hongfang
    Xia, Bao Yu
    ADVANCED SCIENCE, 2018, 5 (04)
  • [7] High-performance anodes for aqueous Zn-iodine batteries from spent Zn-air batteries
    Shan, Xiaofeng
    Fu, Yanqing
    Zhang, Dongdong
    Li, Pan
    Yang, Weiyou
    Wei, Qiliang
    MATERIALS ADVANCES, 2023, 4 (07): : 1623 - 1627
  • [8] Facile preparation of high-performance MnO2/KB air cathode for Zn-air batteries
    Wu, M. C.
    Zhao, T. S.
    Jiang, H. R.
    Wei, L.
    Zhang, Z. H.
    ELECTROCHIMICA ACTA, 2016, 222 : 1438 - 1444
  • [9] Development and Optimization of Air-Electrodes for Rechargeable Zn-Air Batteries
    Nisa, Khair Un
    da Silva Freitas, Williane
    Montero, Jorge
    D'Epifanio, Alessandra
    Mecheri, Barbara
    CATALYSTS, 2023, 13 (10)
  • [10] Sourcing the merits of 3D integrated air cathodes for high-performance Zn-air batteries by bubble pump consumption chronoamperometry
    Li, Mengxuan
    Yu, Linfeng
    Liu, Hai
    Zhang, Chuanyi
    Li, Jiazhan
    Luo, Liang
    Sun, Xiaoming
    NANO RESEARCH, 2024, 17 (08) : 6951 - 6959