Several variants of the Hermitian and skew-Hermitian splitting method for a class of complex symmetric linear systems

被引:48
作者
Wu, Shi-Liang [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, Anyang 455000, Peoples R China
关键词
non-Hermitian matrix; Hermitian matrix; skew-Hermitian matrix; matrix splitting; HSS iteration; complex symmetric linear system; GRADIENT-TYPE METHODS; ITERATIVE METHODS; MATRICES;
D O I
10.1002/nla.1952
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with several variants of the Hermitian and skew-Hermitian splitting iteration method to solve a class of complex symmetric linear systems. Theoretical analysis shows that several Hermitian and skew-Hermitian splitting based iteration methods are unconditionally convergent. Numerical experiments from an n-degree-of-freedom linear system are reported to illustrate the efficiency of the proposed methods. Copyright (c) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:338 / 356
页数:19
相关论文
共 38 条
  • [1] Optical tomography in medical imaging
    Arridge, SR
    [J]. INVERSE PROBLEMS, 1999, 15 (02) : R41 - R93
  • [2] Axelsson O, 2000, NUMER LINEAR ALGEBR, V7, P197, DOI 10.1002/1099-1506(200005)7:4<197::AID-NLA194>3.0.CO
  • [3] 2-S
  • [4] A comparison of iterative methods to solve complex valued linear algebraic systems
    Axelsson, Owe
    Neytcheva, Maya
    Ahmad, Bashir
    [J]. NUMERICAL ALGORITHMS, 2014, 66 (04) : 811 - 841
  • [5] Bais Z-Z, 2007, NUMERICAL LINEAR ALG, V14, P319
  • [6] Bais Z-Z, 2012, NUMERICAL LINEAR ALG, V19, P914
  • [7] Bais Z-Z, 2008, SCI CHINA SER A, V51, P1339
  • [8] Bais Z-Z, 2010, COMPUTING, V87, P93
  • [9] Bais Z-Z, 2004, NUMER MATH, V98, P1
  • [10] Bais Z-Z, 2006, SIAM J SCI COMPUT, V28, P583