Entropy as a Gene-Like Performance Indicator Promoting Thermoelectric Materials

被引:210
作者
Liu, Ruiheng [1 ]
Chen, Hongyi [1 ,2 ,3 ]
Zhao, Kunpeng [1 ,2 ]
Qin, Yuting [1 ,2 ]
Jiang, Binbin [1 ,2 ]
Zhang, Tiansong [1 ]
Sha, Gang [4 ]
Shi, Xun [1 ]
Uher, Ctirad [5 ]
Zhang, Wenqing [1 ,6 ]
Chen, Lidong [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Univ Chinese Acad Sci, Shanghai Inst Ceram, Beijing 100049, Peoples R China
[3] Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[4] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[5] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[6] Southern Univ Sci & Technol, Dept Phys, Shenzhen 518055, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
entropy; high-throughput; thermoelectrics; LATTICE THERMAL-CONDUCTIVITY; SUBSTITUTION;
D O I
10.1002/adma.201702712
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
High-throughput explorations of novel thermoelectric materials based on the Materials Genome Initiative paradigm only focus on digging into the structure-property space using nonglobal indicators to design materials with tunable electrical and thermal transport properties. As the genomic units, following the biogene tradition, such indicators include localized crystal structural blocks in real space or band degeneracy at certain points in reciprocal space. However, this nonglobal approach does not consider how real materials differentiate from others. Here, this study successfully develops a strategy of using entropy as the global gene-like performance indicator that shows how multicomponent thermoelectric materials with high entropy can be designed via a high-throughput screening method. Optimizing entropy works as an effective guide to greatly improve the thermoelectric performance through either a significantly depressed lattice thermal conductivity down to its theoretical minimum value and/or via enhancing the crystal structure symmetry to yield large Seebeck coefficients. The entropy engineering using multicomponent crystal structures or other possible techniques provides a new avenue for an improvement of the thermoelectric performance beyond the current methods and approaches.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] Phenomenological Ginzburg-Landau-like theory for superconductivity in the cuprates
    Banerjee, Sumilan
    Ramakrishnan, T. V.
    Dasgupta, Chandan
    [J]. PHYSICAL REVIEW B, 2011, 83 (02)
  • [2] High-performance bulk thermoelectrics with all-scale hierarchical architectures
    Biswas, Kanishka
    He, Jiaqing
    Blum, Ivan D.
    Wu, Chun-I
    Hogan, Timothy P.
    Seidman, David N.
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. NATURE, 2012, 489 (7416) : 414 - 418
  • [3] Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/NMAT3568, 10.1038/nmat3568]
  • [4] Zintl phases as thermoelectric materials:: Tuned transport properties of the compounds CaxYb1-xZn2Sb2
    Gascoin, F
    Ottensmann, S
    Stark, D
    Haïle, SM
    Snyder, GJ
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (11) : 1860 - 1864
  • [5] RECENT STUDIES OF BISMUTH TELLURIDE AND ITS ALLOYS
    GOLDSMID, HJ
    [J]. JOURNAL OF APPLIED PHYSICS, 1961, 32 : 2198 - &
  • [6] Gulay L., 2011, CHEM MET ALLOY, V4, P200, DOI DOI 10.30970/CMA4.0184
  • [7] Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting
    Jiang, J
    Chen, LD
    Bai, SQ
    Yao, Q
    Wang, Q
    [J]. JOURNAL OF CRYSTAL GROWTH, 2005, 277 (1-4) : 258 - 263
  • [8] High ZT in p-Type (PbTe)1-2x(PbSe)x(PbS)x Thermoelectric Materials
    Korkosz, Rachel J.
    Chasapis, Thomas C.
    Lo, Shih-han
    Doak, Jeff W.
    Kim, Yoon Jun
    Wu, Chun-I
    Hatzikraniotis, Euripidis
    Hogan, Timothy P.
    Seidman, David N.
    Wolverton, Chris
    Dravid, Vinayak P.
    Kanatzidis, Mercouri G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (08) : 3225 - 3237
  • [9] Phase transitions of (1-x) PbZrO3+x (Na1/2Bi1/2)TiO3 (0.01≤x≤0.15) solid solutions
    Lee, JK
    Youn, HJ
    Hong, KS
    [J]. JOURNAL OF MATERIALS RESEARCH, 1999, 14 (01) : 83 - 89
  • [10] Liu HL, 2012, NAT MATER, V11, P422, DOI [10.1038/NMAT3273, 10.1038/nmat3273]