Full blind denoising through noise covariance estimation using Gaussian scale mixtures in the wavelet domain

被引:0
作者
Portilla, J [1 ]
机构
[1] Univ Granada, Visual Informat Proc Grp, Dept Comp Sci & Artificial Intelligence, Granada, Spain
来源
ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5 | 2004年
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We describe an efficient generalized expectation maximization algorithm for estimating the spectral features of a noise source corrupting an observed image. We use a statistical model for images decomposed in on overcomplete oriented pyramid. Each neighborhood of clean pyramid coefficients is modelled as a Gaussian scale mixture, whereas the noise is assumed Gaussion. Combining this GEM technique with a previous Bayesian denoise estimator, we obtain a full blind denoising algorithm, able to deal with homogeneous, Gaussian or mesokurtotic, noise sources of arbitrary covoriance. Results demonstrate the high performance of the method for a wide range of corruption sources.
引用
收藏
页码:1217 / 1220
页数:4
相关论文
共 50 条
[31]   Image denoising using Gaussian scale mixture model in the nonsubsampled Contourlet domain [J].
Zhou, Han-Fei ;
Wang, Xiao-Tong ;
Xu, Xiao-Gang .
Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2009, 31 (08) :1796-1800
[32]   A Blind Receiver with Multiple Antennas in Impulsive Noise with Gaussian Mixtures through MCMC approaches [J].
Ying, Wenwei ;
Jiang, Yuzhong ;
Li, Xiaolong ;
Fan, Cheng .
PROCEEDINGS OF 2012 IEEE 14TH INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY, 2012, :961-965
[33]   Deblurring-by-denoising using spatially adaptive gaussian scale mixtures in overcomplete pyramids [J].
Javier, Jose A. Guerrero-Colon ;
Portilla, Javier .
2006 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP 2006, PROCEEDINGS, 2006, :625-+
[34]   Image denoising in hybrid wavelet and quincunx diamond filter bank domain based on Gaussian scale mixture model [J].
Shanthi, S. Arnala ;
Sulochana, C. Helen ;
Latha, T. .
COMPUTERS & ELECTRICAL ENGINEERING, 2015, 46 :384-393
[35]   Using Projection Kurtosis Concentration Of Natural Images For Blind Noise Covariance Matrix Estimation [J].
Zhang, Xing ;
Lyu, Siwei .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :2870-2876
[36]   IMAGE DECONVOLUTION USING A GAUSSIAN SCALE MIXTURES MODEL TO APPROXIMATE THE WAVELET SPARSENESS CONSTRAINT [J].
Zhang, Yingsong ;
Kingsbury, Nick .
2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, :681-684
[37]   Image Denoising Using Modified Nonsubsampled Contourlet Transform Combined with Gaussian Scale Mixtures Model [J].
Yan, Chunman ;
Zhang, Kaibing ;
Qi, Yunping .
INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: IMAGE AND VIDEO DATA ENGINEERING, ISCIDE 2015, PT I, 2015, 9242 :196-207
[38]   Two-level adaptive denoising using Gaussian scale mixtures in overcomplete oriented pyramids [J].
Guerrero-Colon, JA ;
Portilla, J .
2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, :741-744
[39]   Estimation of non-Gaussian noise parameters in the wavelet domain using the moment-generating function (vol 21, 023025, 2012) [J].
Svihlik, Jan ;
Fliegel, Karel ;
Kukal, Jaromir ;
Jerhotova, Eva ;
Pata, Petr ;
Vitek, Stanislav ;
Koten, Pavel .
JOURNAL OF ELECTRONIC IMAGING, 2012, 21 (03)
[40]   Blind method for noise estimation using frequency domain Natural Scene features [J].
Viqar, Maryam ;
Khan, Ekram .
2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, :454-458