Prediction of keratoconus progression using deep learning of anterior segment optical coherence tomography maps

被引:18
作者
Kamiya, Kazutaka [1 ]
Ayatsuka, Yuji [2 ]
Kato, Yudai [2 ]
Shoji, Nobuyuki [3 ]
Miyai, Takashi [4 ]
Ishii, Hitoha [4 ]
Mori, Yosai [5 ]
Miyata, Kazunori [5 ]
机构
[1] Kitasato Univ, Sch Allied Hlth Sci, Visual Physiol, 1-15-1 Kitasato, Sagamihara, Kanagawa 2520373, Japan
[2] Cresco Ltd, Tokyo, Japan
[3] Kitasato Univ, Dept Ophthalmol, Sch Med, Sagamihara, Kanagawa, Japan
[4] Univ Tokyo, Sch Med, Dept Ophthalmol, Tokyo, Japan
[5] Miyata Eye Hosp, Dept Ophthalmol, Miyazaki, Japan
关键词
Deep learning; keratoconus; progression; prediction; optical coherence tomography;
D O I
10.21037/atm-21-1772
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: To predict keratoconus progression using deep learning of the color-coded maps measured with a swept-source anterior segment optical coherence tomography (As-OCT) device. Methods: We enrolled 218 keratoconic eyes with and without disease progression. Using deep learning of the 6 color-coded maps (anterior elevation, anterior curvature, posterior elevation, posterior curvature, total refractive power, and pachymetry map) obtained by the As-OCT (CASIA, Tomey), we assessed the accuracy, sensitivity, and specificity of prediction of keratoconus progression in such eyes. Results: Deep learning of the 6 color-coded maps exhibited an accuracy of 0.794 in discriminating keratoconus with and without progression. For a single map analysis, posterior elevation map (0.798) showed the highest accuracy, followed by anterior curvature map (0.775), posterior corneal curvature map (0.757), anterior elevation map (0.752), total refractive power map (0.729), and pachymetry map (0.720), in distinguishing between progressive and non-progressive keratoconus. The use of the adjusted algorithm by age subgroups improved to an accuracy of 0.849. Conclusions: Deep learning of the As-OCT color-coded maps effectively discriminates progressive keratoconus from non-progressive keratoconus with an accuracy of approximately 85% using the adjusted age algorithm, indicating that it will become an aid for predicting the progression of the disease, which is clinically beneficial for decision-making of the surgical indication of corneal cross-linking (CXL).
引用
收藏
页数:11
相关论文
共 21 条
[1]   Prevalence of Keratoconus in a Refractive Surgery Population [J].
Al-Amri, Abdulrahman Mohammed .
JOURNAL OF OPHTHALMOLOGY, 2018, 2018
[2]   Anterior Segment Biometry Using Spectral-Domain Optical Coherence Tomography [J].
Aptel, Florent ;
Chiquet, Christophe ;
Gimbert, Aurelie ;
Romanet, Jean-Paul ;
Thuret, Gilles ;
Gain, Philippe ;
Campolmi, Nelly .
JOURNAL OF REFRACTIVE SURGERY, 2014, 30 (05) :354-+
[3]   Deep learning algorithm predicts diabetic retinopathy progression in individual patients [J].
Arcadu, Filippo ;
Benmansour, Fethallah ;
Maunz, Andreas ;
Willis, Jeff ;
Haskova, Zdenka ;
Prunotto, Marco .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[4]   Estimating Rates of Progression and Predicting Future Visual Fields in Glaucoma Using a Deep Variational Autoencoder [J].
Berchuck, Samuel I. ;
Mukherjee, Sayan ;
Medeiros, Felipe A. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]   Comparison of corneal measurements in keratoconus using swept-source optical coherence tomography and combined Placido-Scheimpflug imaging [J].
Chan, Tommy C. Y. ;
Biswas, Sayantan ;
Yu, Marco ;
Jhanji, Vishal .
ACTA OPHTHALMOLOGICA, 2017, 95 (06) :E486-E494
[6]   Xception: Deep Learning with Depthwise Separable Convolutions [J].
Chollet, Francois .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1800-1807
[7]   Repeatability of Pachymetric Mapping Using Fourier Domain Optical Coherence Tomography in Corneas With Opacities [J].
El Gendy, Nehal M. Samy ;
Li, Yan ;
Zhang, Xinbo ;
Huang, David .
CORNEA, 2012, 31 (04) :418-423
[8]  
Fujimura F., 2020, JAPANESE J VISUAL SC, V14, P80
[9]   Age-specific Incidence and Prevalence of Keratoconus: A Nationwide Registration Study [J].
Godefrooij, Daniel A. ;
De Wit, G. Ardine ;
Uiterwaal, Cuno S. ;
Imhof, Saskia M. ;
Wisse, Robert P. L. .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2017, 175 :169-172
[10]   Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification [J].
Hua, Cam-Hao ;
Thien Huynh-The ;
Kim, Kiyoung ;
Yu, Seung-Young ;
Thuong Le-Tien ;
Park, Gwang Hoon ;
Bang, Jaehun ;
Khan, Wajahat Ali ;
Bae, Sung-Ho ;
Lee, Sungyoung .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2019, 132