Mathematical Modelling of the Effects of Plasma Treatment on the Diffusivity of Biofilm

被引:16
作者
Gupta, Tripti Thapa [1 ]
Karki, Surya B. [1 ]
Fournier, Ronald [1 ]
Ayan, Halim [1 ,2 ]
机构
[1] Univ Toledo, Dept Bioengn, Coll Engn, Toledo, OH 43606 USA
[2] Univ Toledo, Dept Mech Ind & Mfg Engn, Coll Engn, Toledo, OH 43606 USA
来源
APPLIED SCIENCES-BASEL | 2018年 / 8卷 / 10期
关键词
biofilm; Pseudomonas aeruginosa; non-thermal plasma; CHX; diffusion; mathematical modelling; DIELECTRIC-BARRIER DISCHARGE; PSEUDOMONAS-AERUGINOSA; STERILIZATION; PENETRATION;
D O I
10.3390/app8101729
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biofilm formation on implanted medical devices is the reason for most of the nosocomial infections in clinical settings. Biofilms are more resistant to antimicrobials than their planktonic cells mainly because of the presence of the matrix of extracellular polymeric substances (EPSs), which acts as a physical barrier that limits the transport of antimicrobials inside the biofilm. A combinatorial antimicrobial approach of a non-thermal plasma and chlorhexidine (CHX) digluconate can be used to sterilize those surfaces contaminated with biofilm. However, the reason behind achieving this combinatorial decontamination is not known. Thus, in this study, we developed a mathematical model to explain the reason behind sterilization with the combinatorial treatment approach. It was found that the application of plasma prior to treatment with CHX is disrupting the biofilm and making it very porous. This is allowing CHX to penetrate deeper inside the porous biofilm, which is then effective at sterilizing the biofilm.
引用
收藏
页数:12
相关论文
共 37 条
[1]   Nanosecond-pulsed uniform dielectric-barrier discharge [J].
Ayan, Halim ;
Fridman, Gregory ;
Gutsol, Alexander F. ;
Vasilets, Victor N. ;
Fridman, Alexander ;
Friedman, Gary .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2008, 36 (02) :504-508
[2]  
Balagopal S., 2013, J Pharm Sci Res, V5, P270
[3]   Innovative non-thermal plasma disinfection process inside sealed bags: Assessment of bactericidal and sporicidal effectiveness in regard to current sterilization norms [J].
Ben Belgacem, Zouhaier ;
Carre, Gaelle ;
Charpentier, Emilie ;
Le-Bras, Florian ;
Maho, Thomas ;
Robert, Eric ;
Pouvesle, Jean-Michel ;
Polidor, Franck ;
Gangloff, Sophie C. ;
Boudifa, Mohamed ;
Gelle, Marie-Paule .
PLOS ONE, 2017, 12 (06)
[4]   Numerical and experimental study of the dynamics of a μs helium plasma gun discharge with various amounts of N2 admixture [J].
Bourdon, Anne ;
Darny, Thibault ;
Pechereau, Francois ;
Pouvesle, Jean-Michel ;
Viegas, Pedro ;
Iseni, Sylvain ;
Robert, Eric .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2016, 25 (03)
[5]   A refined technique for extraction of extracellular matrices from bacterial biofilms and its applicability [J].
Chiba, Akio ;
Sugimoto, Shinya ;
Sato, Fumiya ;
Hori, Seiji ;
Mizunoe, Yoshimitsu .
Microbial Biotechnology, 2015, 8 (03) :392-403
[6]   Role of biofilms in antimicrobial resistance [J].
Donlan, RM .
ASAIO JOURNAL, 2000, 46 (06) :S47-S52
[7]   Low temperature atmospheric pressure plasma sources for microbial decontamination [J].
Ehlbeck, J. ;
Schnabel, U. ;
Polak, M. ;
Winter, J. ;
von Woedtke, Th ;
Brandenburg, R. ;
von dem Hagen, T. ;
Weltmann, K-D .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2011, 44 (01)
[8]  
Ehlbeck J., 2008, GMS KRANKENH INTERDI, V3, P2
[9]   The biofilm matrix [J].
Flemming, Hans-Curt ;
Wingender, Jost .
NATURE REVIEWS MICROBIOLOGY, 2010, 8 (09) :623-633
[10]  
Fournier RL., 2017, Basic Transport Phenomena in Biomedical Engineering