Micromachining technology for lateral field emission devices

被引:26
作者
Milanovic, V [1 ]
Doherty, L
Teasdale, DA
Parsa, S
Pister, KSJ
机构
[1] La Jolla Microsyst Inst, San Diego, CA 92110 USA
[2] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, UC Berkeley Microfabricat Lab, Berkeley, CA 94720 USA
关键词
deep reactive ion etch; field emission device; MEMS; micromachining; vacuum microelectronics; vacuum tubes;
D O I
10.1109/16.892185
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate a range of novel applications of micromachining and microelectromechanical systems (MEMS) for achieving efficient and tunable field emission devices (FEDs), Arrays of lateral field emission tips are fabricated with submicron spacing utilizing deep reactive ion etch (DRIE), Current densities above 150 A/cm(2) are achieved with over 150 . 10(6) tips/cm(2). With sacrificial sidewall spacing, electrodes can be placed at arbitrarily close distances to reduce turn-on voltages. F-Ve further utilize MEMS actuators to laterally adjust electrode distances. To improve the integration capability of FEDs, we demonstrate batch hump-transfer of working lateral FEDs onto a quartz target substrate.
引用
收藏
页码:166 / 173
页数:8
相关论文
共 50 条
[41]   The application of porous-Si micromachining technology in the calorimetric sensor [J].
Lai, ZS ;
Wan, XJ ;
Zhou, PS ;
Wang, YZ .
MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY II, 1996, 2879 :338-346
[42]   High current density Si field emission devices with plasma passivation and HfC coating [J].
Rakhshandehroo, MR ;
Pang, SW .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (04) :792-797
[43]   The comparative analysis of silicon wafers micromachining versus nonconventional technology [J].
Ulieru, DG .
MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY VII, 2001, 4557 :371-377
[44]   Chemical Mechanical Planarization: an effective microfabrication and micromachining technology for MEMS [J].
Lee, J ;
Myers, R ;
Dear, T ;
Gensler, C .
MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY VIII, 2003, 4979 :119-128
[45]   The comparative analysis of silicon wafers micromachining versus nonconventional technology [J].
Ulieru, DG .
COMPUTER-CONTROLLED MICROSHAPING, 1999, 3822 :83-89
[46]   Client-configurable eight-channel optical add/drop multiplexer using micromachining technology [J].
Pu, C ;
Lin, LY ;
Goldstein, EL ;
Tkach, RW .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2000, 12 (12) :1665-1667
[47]   FABRICATION OF LARGE-AREA FIELD-EMISSION ARRAYS BY BONDING TECHNOLOGY [J].
HUANG, QA ;
XIANG, T ;
QIN, M ;
CHEN, JN ;
ZHANG, HZ ;
TONG, QY .
CHINESE SCIENCE BULLETIN, 1993, 38 (22) :1866-1869
[48]   Electrostatic Microelectromechanical Logic Devices Made by CMOS-compatible Surface Micromachining [J].
Mita M. ;
Ataka M. ;
Toshiyoshi H. .
IEEJ Transactions on Sensors and Micromachines, 2020, 140 (01) :2-13
[49]   MICROWAVE AND MILLIMETRE WAVE DEVICES BASED ON MICROMACHINING OF III-V SEMICONDUCTORS [J].
Mueller, Alexandru ;
Neculoiu, Dan ;
Konstantinidis, George ;
Vaha-Heikila, Tauno .
ADVANCED MATERIALS AND TECHNOLOGIES FOR MICRO/NANO-DEVICES, SENSORS AND ACTUATORS, 2010, :75-+
[50]   Research on the technology of femtosecond laser micromachining based on image edge tracing [J].
Zhang DongShi ;
Chen Feng ;
Liu HeWei ;
Wang XianHua ;
Du Kai ;
Si JinHai ;
Hou Xun .
CHINESE SCIENCE BULLETIN, 2010, 55 (09) :877-881