Observables on lexicographic effect algebras

被引:3
作者
Dvurecenskij, Anatolij [1 ,2 ]
Lachman, Dominik [2 ]
机构
[1] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[2] Palacky Univ Olomouc, Fac Sci, Tr 17 Listopadu 12, Olomouc 77146, Czech Republic
关键词
Effect algebra; Lexicographic effect algebra; Monotone sigma-complete po-group; Observable; Spectral resolution; Finiteness property; PERFECT EFFECT ALGEBRAS;
D O I
10.1007/s00012-019-0628-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study lexicographic effect algebras which are intervals in lexicographic products H (x) over right arrow G, where (H, u) is a unital po-group and G is a monotone sigma-complete po-group with interpolation. We prove that there is a one-to-one correspondence between observables, which are a special kind of sigma-homomorphisms and analogues of measurable functions, and spectral resolutions which are systems {x(t) : t epsilon R} of elements of a lexicographic effect algebra that are monotone, "left continuous", and going to 0 if t -> -infinity and to 1 if t -> +infinity. We show that this correspondence in lexicographic effect algebras holds only for spectral resolutions with the finiteness property. Otherwise, they do not determine any observable. Whence, the information involved in a spectral resolution with the finiteness property completely describes information about an observable.
引用
收藏
页数:22
相关论文
共 18 条
[1]  
[Anonymous], 1974, Measure Theory
[2]  
[Anonymous], 1986, MATH SURVEYS MONOGR
[3]   Loomis-Sikorski representation of monotone σ-complete effect algebras [J].
Buhagiar, D ;
Chetcuti, E ;
Dvurecenskij, A .
FUZZY SETS AND SYSTEMS, 2006, 157 (05) :683-690
[4]  
Catlin D., 1968, INT J THEOR PHYS, V1, P285, DOI DOI 10.1007/BF00668669
[5]   Observables on perfect MV-algebras [J].
Di Nola, Antonio ;
Dvurecenskij, Anatolij ;
Lenzi, Giacomo .
FUZZY SETS AND SYSTEMS, 2019, 369 :57-81
[6]   Godel spaces and perfect MV-algebras [J].
Di Nola, Antonio ;
Grigolia, Revaz .
JOURNAL OF APPLIED LOGIC, 2015, 13 (03) :270-284
[7]  
Dvurecenskij A., OBSERVABLES N PERFEC
[8]  
Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
[9]   Perfect effect algebras are categorically equivalent with abelian interpolation po-groups [J].
Dvurecenskij, Anatolij .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 82 :183-207
[10]   Perfect Effect Algebras and Spectral Resolutions of Observables [J].
Dvurecenskij, Anatolij .
FOUNDATIONS OF PHYSICS, 2019, 49 (06) :607-628