Observables on lexicographic effect algebras

被引:3
作者
Dvurecenskij, Anatolij [1 ,2 ]
Lachman, Dominik [2 ]
机构
[1] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
[2] Palacky Univ Olomouc, Fac Sci, Tr 17 Listopadu 12, Olomouc 77146, Czech Republic
关键词
Effect algebra; Lexicographic effect algebra; Monotone sigma-complete po-group; Observable; Spectral resolution; Finiteness property; PERFECT EFFECT ALGEBRAS;
D O I
10.1007/s00012-019-0628-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study lexicographic effect algebras which are intervals in lexicographic products H (x) over right arrow G, where (H, u) is a unital po-group and G is a monotone sigma-complete po-group with interpolation. We prove that there is a one-to-one correspondence between observables, which are a special kind of sigma-homomorphisms and analogues of measurable functions, and spectral resolutions which are systems {x(t) : t epsilon R} of elements of a lexicographic effect algebra that are monotone, "left continuous", and going to 0 if t -> -infinity and to 1 if t -> +infinity. We show that this correspondence in lexicographic effect algebras holds only for spectral resolutions with the finiteness property. Otherwise, they do not determine any observable. Whence, the information involved in a spectral resolution with the finiteness property completely describes information about an observable.
引用
收藏
页数:22
相关论文
共 18 条
  • [1] [Anonymous], 1974, Measure Theory
  • [2] [Anonymous], 1986, MATH SURVEYS MONOGR
  • [3] Loomis-Sikorski representation of monotone σ-complete effect algebras
    Buhagiar, D
    Chetcuti, E
    Dvurecenskij, A
    [J]. FUZZY SETS AND SYSTEMS, 2006, 157 (05) : 683 - 690
  • [4] Catlin D., 1968, INT J THEOR PHYS, V1, P285, DOI DOI 10.1007/BF00668669
  • [5] Observables on perfect MV-algebras
    Di Nola, Antonio
    Dvurecenskij, Anatolij
    Lenzi, Giacomo
    [J]. FUZZY SETS AND SYSTEMS, 2019, 369 : 57 - 81
  • [6] Godel spaces and perfect MV-algebras
    Di Nola, Antonio
    Grigolia, Revaz
    [J]. JOURNAL OF APPLIED LOGIC, 2015, 13 (03) : 270 - 284
  • [7] Dvurecenskij A., OBSERVABLES N PERFEC
  • [8] Dvurecenskij A., 2000, NEW TRENDS QUANTUM S
  • [9] Perfect effect algebras are categorically equivalent with abelian interpolation po-groups
    Dvurecenskij, Anatolij
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2007, 82 : 183 - 207
  • [10] Perfect Effect Algebras and Spectral Resolutions of Observables
    Dvurecenskij, Anatolij
    [J]. FOUNDATIONS OF PHYSICS, 2019, 49 (06) : 607 - 628