Symmetries and reversing symmetries of polynomial automorphisms of the plane

被引:6
|
作者
Baake, M
Roberts, JAG
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
[2] Univ New S Wales, Sch Math, Sydney, NSW 2052, Australia
关键词
D O I
10.1088/0951-7715/18/2/017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The polynomial automorphisms of the affine plane over a field K form a group which has the structure of an amalgamated free product. This well-known algebraic structure can be used to determine some key results about the symmetry and reversing symmetry groups of a given polynomial automorphism.
引用
收藏
页码:791 / 816
页数:26
相关论文
共 50 条
  • [41] Scalar Field Theories with Polynomial Shift Symmetries
    Tom Griffin
    Kevin T. Grosvenor
    Petr Hořava
    Ziqi Yan
    Communications in Mathematical Physics, 2015, 340 : 985 - 1048
  • [42] Using symmetries in the eigenvalue method for polynomial systems
    Corless, Robert M.
    Gatermann, Karin
    Kotsireas, Ilias S.
    JOURNAL OF SYMBOLIC COMPUTATION, 2009, 44 (11) : 1536 - 1550
  • [43] Locally tame plane polynomial automorphisms
    Berson, Joost
    Dubouloz, Adrien
    Furter, Jean-Philippe
    Maubach, Stefan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (01) : 149 - 153
  • [44] On the length of polynomial automorphisms of the affine plane
    Jean-Philippe Furter
    Mathematische Annalen, 2002, 322 : 401 - 411
  • [45] On the length of polynomial automorphisms of the affine plane
    Furter, JP
    MATHEMATISCHE ANNALEN, 2002, 322 (02) : 401 - 411
  • [47] A characterization of semisimple plane polynomial automorphisms
    Furter, Jean-Philippe
    Maubach, Stefan
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2010, 214 (05) : 574 - 583
  • [48] Plane polynomial automorphisms of fixed multidegree
    Jean-Philippe Furter
    Mathematische Annalen, 2009, 343 : 901 - 920
  • [49] Plane polynomial automorphisms of fixed multidegree
    Furter, Jean-Philippe
    MATHEMATISCHE ANNALEN, 2009, 343 (04) : 901 - 920
  • [50] On the symmetries of a nonlinear non-polynomial oscillator
    Mohanasubha, R.
    Senthilvelan, M.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 43 : 111 - 117