EFFECT OF MEMBRANE PROPERTIES ON DYNAMIC BEHAVIOR OF POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

被引:0
|
作者
Verma, Atul [1 ]
Pitchumani, Ranga [1 ]
机构
[1] Virginia Tech, Dept Mech Engn, Adv Mat & Technol Lab, Blacksburg, VA 24061 USA
关键词
WATER; MODEL;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Understanding the performance of proton exchange membrane (PEM) fuel cells is critical to the water management in the fuel cell system. Low-humidity operating conditions present a complex interaction between dynamic behavior and water transport owing to different time scales of water transport mechanisms in the transient process. Toward understanding the effects of membrane properties on the dynamic behavior, this paper presents numerical simulations for a single channel PEM fuel cell undergoing changes in load, by subjecting the unit cell to step change in current. The objective is to elucidate the complex interaction between cell voltage response and water transport dynamics for various membrane properties, where the performance is critically related water content of the membrane. Detailed computational fluid dynamics (CFD) simulations are carried out to show that step increase in current density leads to anode dryout due to electro-osmotic drag, and investigate its dependence on variations in membrane properties.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Polymer Electrolyte Membrane Technology for Fuel Cells
    Raj G. Rajendran
    MRS Bulletin, 2005, 30 : 587 - 590
  • [22] Dynamic modeling of chemical membrane degradation in polymer electrolyte fuel cells: Effect of pinhole formation
    Zheng, Weibo
    Xu, Liangfei
    Hu, Zunyan
    Ding, Yujie
    Li, Jianqiu
    Ouyang, Minggao
    JOURNAL OF POWER SOURCES, 2021, 487
  • [23] Membrane depending properties of high temperature polymer electrolyte fuel cells
    Mahr, Ulrich
    Gronwald, Oliver
    Reiche, Annette
    Melzner, Dieter
    DESALINATION, 2006, 200 (1-3) : 648 - 649
  • [24] Synthesis and Properties of Composite Membranes for Polymer Electrolyte Membrane Fuel Cells
    Chesnokova, Alexandra N.
    Lebedeva, Oksana V.
    Pozhidaev, Yury N.
    Ivanov, Nikolay A.
    Rzhechitskii, Alexander E.
    BIOTECHNOLOGY, CHEMICAL AND MATERIALS ENGINEERING III, PTS 1 AND 2, 2014, 884-885 : 251 - 256
  • [25] The Effect of Platinum Electrocatalyst on Membrane Degradation in Polymer Electrolyte Fuel Cells
    Bodner, Merit
    Cermenek, Bernd
    Rami, Mija
    Hacker, Viktor
    MEMBRANES, 2015, 5 (04): : 888 - 902
  • [26] Study of the effect of membrane thickness on the performance of polymer electrolyte fuel cells by water distribution in a membrane
    Teranishi, K
    Tsushima, S
    Hirai, S
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (06) : A281 - A284
  • [27] Analysis of the Capacitive Behavior of Polymer Electrolyte Membrane Fuel Cells during Operation
    Lochner, Tim
    Perchthaler, Markus
    Hnyk, Franziska
    Sick, Daniel
    Sabawa, Jarek P.
    Bandarenka, Aliaksandr S.
    CHEMELECTROCHEM, 2021, 8 (01): : 96 - 102
  • [28] Effect of dynamic operation on chemical degradation of a polymer electrolyte membrane fuel cell
    Jung, Minjae
    Williams, Keith A.
    JOURNAL OF POWER SOURCES, 2011, 196 (05) : 2717 - 2724
  • [29] Ionomer Degradation in Polymer Electrolyte Membrane Fuel Cells
    Young, A. P.
    Stumper, J.
    Knights, S.
    Gyenge, E.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) : B425 - B436
  • [30] Polymer electrolyte membrane fuel cells for communication applications
    Chu, D
    Jiang, R
    Gardner, K
    Jacobs, R
    Schmidt, J
    Quakenbush, T
    Stephens, J
    JOURNAL OF POWER SOURCES, 2001, 96 (01) : 174 - 178