Finite element and higher order difference formulations for modelling heat transport in magnetised plasmas

被引:43
作者
Guenter, S. [1 ]
Lackner, K. [1 ]
Tichmann, C. [1 ]
机构
[1] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
关键词
anisotropic heat transport in strongly magnetised plasmas; non-aligned coordinates; numerical methods;
D O I
10.1016/j.jcp.2007.07.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a finite element analogue to the second-order, finite difference scheme for the solution of the heat diffusion equation in strongly magnetised plasmas given in Gunter et al. [S. Gunter et al., J. Comp. Phys. 209 (2005) 354]. Compared to standard finite element or finite difference formulations it strongly reduces the pollution of perpendicular heat fluxes by parallel ones even without resorting to field-aligned coordinates. We present both bi-linear and bi-quadratic versions of this scheme as well as a fourth-order extension of the original difference scheme of Gunter et al. (2005). In the second part of the paper, we address the formulation of the boundary conditions at walls with an oblique incidence of field lines and the treatment of the coordinate singularity at r = 0 in cylindrical, or topologically equivalent coordinates with the reduced-pollution finite difference scheme. All tests shown indicate that both the finite-difference and the finite-element versions of the scheme should substantially alleviate the requirement for field-alignment of the coordinates over the realistic range of chi(parallel to)/chi(perpendicular to) in toroidal magnetic confinement devices. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:2306 / 2316
页数:11
相关论文
共 10 条
  • [1] Bohm D., 1949, Qualitative Description of the Arc Plasma in a Magnetic Field
  • [2] Radiative divertor modelling for ITER and TPX
    Braams, BJ
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 1996, 36 (2-3) : 276 - 281
  • [3] PLASMA-WALL TRANSITION IN AN OBLIQUE MAGNETIC-FIELD
    CHODURA, R
    [J]. PHYSICS OF FLUIDS, 1982, 25 (09) : 1628 - 1633
  • [4] Modelling of heat transport in magnetised plasmas using non-aligned coordinates
    Günter, S
    Yu, Q
    Krüger, J
    Lackner, K
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 209 (01) : 354 - 370
  • [5] Numerical modeling of diffusive heat transport across magnetic islands and highly stochastic layers
    Hoelzl, M.
    Guenter, S.
    Yu, Q.
    Lackner, K.
    [J]. PHYSICS OF PLASMAS, 2007, 14 (05)
  • [6] Nonlinear simulation studies of tokamaks and STs
    Park, W
    Breslau, J
    Chen, J
    Fu, GY
    Jardin, SC
    Klasky, S
    Menard, J
    Pletzer, A
    Stratton, BC
    Stutman, D
    Strauss, HR
    Sugiyama, LE
    [J]. NUCLEAR FUSION, 2003, 43 (06) : 483 - 489
  • [7] 2-D FLUID TRANSPORT SIMULATIONS OF GASEOUS RADIATIVE DIVERTORS
    ROGNLIEN, TD
    BROWN, PN
    CAMPBELL, RB
    KAISER, TB
    KNOLL, DA
    MCHUGH, PR
    PORTER, GD
    RENSINK, ME
    SMITH, GR
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 1994, 34 (2-3) : 362 - 367
  • [8] MODELS AND NUMERICS IN THE MULTI-FLUID 2-D EDGE PLASMA CODE EDGE2D/U
    SIMONINI, R
    CORRIGAN, G
    RADFORD, G
    SPENCE, J
    TARONI, A
    [J]. CONTRIBUTIONS TO PLASMA PHYSICS, 1994, 34 (2-3) : 368 - 373
  • [9] Nonlinear magnetohydrodynamics simulation using high-order finite elements
    Sovinec, CR
    Glasser, AH
    Gianakon, TA
    Barnes, DC
    Nebel, RA
    Kruger, SE
    Schnack, DD
    Plimpton, SJ
    Tarditi, A
    Chu, MS
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 195 (01) : 355 - 386
  • [10] WAGNER F, 1986, PHYS PLASMA WALL INT