UNIQUENESS OF A VERY SINGULAR SOLUTION TO NONLINEAR DEGENERATE PARABOLIC EQUATIONS WITH ABSORPTION FOR DIRICHLET BOUNDARY CONDITION

被引:0
作者
Nguyen Anh Dao [1 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Appl Anal Res Grp, Ho Chi Minh City, Vietnam
关键词
Degenerate parabolic equations; large solution; very singular solution; Dirac measure; POROUS-MEDIA EQUATION; TIME BEHAVIOR; HEAT-EQUATION; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence and uniqueness of singular solutions (fundamental solution, very singular solution, and large solution) of quasilinear parabolic equations with absorption for Dirichlet boundary condition. We also show the short time behavior of singular solutions as t tends to 0.
引用
收藏
页数:8
相关论文
共 19 条
[1]   STABILIZATION OF SOLUTIONS OF A DEGENERATE NON-LINEAR DIFFUSION PROBLEM [J].
ARONSON, D ;
CRANDALL, MG ;
PELETIER, LA .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1982, 6 (10) :1001-1022
[2]  
Bidaut-Veron MF, 2012, ADV DIFFERENTIAL EQU, V17, P903
[3]  
Bidaut-Véron MF, 2015, ADV NONLINEAR STUD, V15, P889
[4]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[5]  
CHASSEIGNE E., 2001, ANN MAT PUR APPL, V179, P413
[6]  
CRANDALL MG, 1989, ARCH RATION MECH AN, V105, P163
[7]  
Diaz J. I., EXISTENCE UNIQ UNPUB
[8]  
DIAZ JI, 1992, PUBL MAT, V36, P19
[9]   CONTINUITY OF WEAK SOLUTIONS TO A GENERAL POROUS-MEDIUM EQUATION [J].
DIBENEDETTO, E .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (01) :83-118
[10]  
DIBENEDETTO E, 1984, J REINE ANGEW MATH, V349, P83