Influence of Empirical Mode Decomposition on Heart Rate Variability Indices Obtained from Smartphone Seismocardiograms

被引:0
|
作者
Siecinski, Szymon [1 ]
Kostka, Pawel S. [1 ]
Tkacz, Ewaryst J. [1 ]
机构
[1] Silesian Tech Univ, Fac Biomed Engn, Dept Biosensors & Biomed Signal Proc, Roosevelta 40, PL-41800 Zabrze, Poland
关键词
D O I
10.1109/embc.2019.8857452
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Heart rate variability (HRV) is a physiological variation of time interval between consecutive heart beats caused by the activity of autonomic nervous system. Seismo-cardiography (SCG) is a non-invasive method of analyzing cardiac vibrations and can be used to obtain inter-beat intervals required to perform HRV analysis. Heart beats on SCG signals are detected as the occurrences of aortic valve opening (AO) waves. Morphological variations between subjects complicate developing annotation algorithms. To overcome this obstacle we propose the empirical mode decomposition (EMD) to improve the signal quality. We used two algorithms to determine the influence of EMD on HRV indices: the first algorithm uses a band-pass filter and the second algorithm uses EMD as the first step. Higher beat detection performance was achieved for algorithm with EMD (Se=0.926, PPV=0.926 for all analyzed beats) than the algorithm with a band-pass filter (Se=0.859, PPV=0.855). The influence of analyzed algorithms on HRV indices is low despite the differences of heart beat detection performance between analyzed algorithms.
引用
收藏
页码:4913 / 4916
页数:4
相关论文
共 50 条
  • [1] Seismocardiograms return Valid Heart Rate Variability Indices
    Laurin, Alexandre
    Blaber, Andrew
    Tavakolian, Kouhyar
    2013 COMPUTING IN CARDIOLOGY CONFERENCE (CINC), 2013, 40 : 413 - 416
  • [2] Empirical mode decomposition of heart rate variability
    Lin, DC
    ANALYSIS OF BIOMEDICAL SIGNALS AND IMAGES, PROCEEDINGS, 2002, : 81 - 83
  • [3] Heart Rate Variability Analysis on Reference Heart Beats and Detected Heart Beats of Smartphone Seismocardiograms
    Siecinski, Szymon
    Kostka, Pawel S.
    Tkacz, Ewaryst J.
    Piaseczna, Natalia
    Wadas, Marta
    INFORMATION TECHNOLOGY IN BIOMEDICINE, 2019, 1011 : 473 - 480
  • [4] Application of empirical mode decomposition to heart rate variability analysis
    J. C. Echeverría
    J. A. Crowe
    M. S. Woolfson
    B. R. Hayes-Gill
    Medical and Biological Engineering and Computing, 2001, 39 : 471 - 479
  • [5] Application of empirical mode decomposition to heart rate variability analysis
    Echeverría, JC
    Crowe, JA
    Woolfson, MS
    Hayes-Gill, BR
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2001, 39 (04) : 471 - 479
  • [6] Empirical mode Decomposition for frequency analysis of Heart rate variability
    Shaik, Naziya A.
    DipaliRamdasi
    2014 INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2014,
  • [7] Empirical Mode Decomposition of Heart Rate Variability. A Methodological Study
    Schiecke, Karin
    Piper, Diana
    Buerger, Stefanie
    Leistritz, Lutz
    Feucht, Martha
    Witte, Herbert
    2014 8TH CONFERENCE OF THE EUROPEAN STUDY GROUP ON CARDIOVASCULAR OSCILLATIONS (ESGCO), 2014, : 105 - +
  • [8] Comparison of Heart Rate Variability Analysis with Empirical Mode Decomposition and Fourier Transform
    Zelechower, Javier
    Pose, Fernando
    Redelico, Francisco
    Risk, Marcelo
    APPLIED INFORMATICS (ICAI 2021), 2021, 1455 : 278 - 289
  • [9] Analysis of Foetal Heart Rate Variability Components by Means of Empirical Mode Decomposition
    Romano, M.
    Faiella, G.
    Clemente, F.
    Iuppariello, L.
    Bifulco, P.
    Cesarelli, M.
    XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016, 2016, 57 : 71 - 74
  • [10] Determining Heart Rate Beat-to-Beat from Smartphone Seismocardiograms: Preliminary Studies
    Siecinski, Szymon
    Kostka, Pawel
    INNOVATIONS IN BIOMEDICAL ENGINEERING, 2018, 623 : 133 - 140