First-order sidebands in circuit QED using qubit frequency modulation

被引:64
作者
Beaudoin, Felix [1 ,2 ,3 ]
da Silva, Marcus P. [2 ]
Dutton, Zachary [2 ]
Blais, Alexandre [1 ]
机构
[1] Univ Sherbrooke, Dept Phys, Sherbrooke, PQ J1K 2R1, Canada
[2] Raytheon BBN Technol, Quantum Informat Proc Grp, Cambridge, MA 02138 USA
[3] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 02期
基金
加拿大自然科学与工程研究理事会;
关键词
STATES; GATE;
D O I
10.1103/PhysRevA.86.022305
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Sideband transitions have been shown to generate controllable interaction between superconducting qubits and microwave resonators. Up to now, these transitions have been implemented with voltage drives on the qubit or the resonator, with the significant disadvantage that such implementations only lead to second-order sideband transitions. Here we propose an approach to achieve first-order sideband transitions by relying on controlled oscillations of the qubit frequency using a flux-bias line. Not only can first-order transitions be significantly faster, but the same technique can be employed to implement other tunable qubit-resonator and qubit-qubit interactions. We discuss in detail how such first-order sideband transitions can be used to implement a high fidelity controlled-NOT operation between two transmons coupled to the same resonator.
引用
收藏
页数:14
相关论文
共 37 条
  • [1] Dissipation and ultrastrong coupling in circuit QED
    Beaudoin, Felix
    Gambetta, Jay M.
    Blais, A.
    [J]. PHYSICAL REVIEW A, 2011, 84 (04):
  • [2] Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits
    Bialczak, R. C.
    Ansmann, M.
    Hofheinz, M.
    Lucero, E.
    Neeley, M.
    O'Connell, A. D.
    Sank, D.
    Wang, H.
    Wenner, J.
    Steffen, M.
    Cleland, A. N.
    Martinis, J. M.
    [J]. NATURE PHYSICS, 2010, 6 (06) : 409 - 413
  • [3] Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation
    Blais, A
    Huang, RS
    Wallraff, A
    Girvin, SM
    Schoelkopf, RJ
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062320 - 1
  • [4] Quantum-information processing with circuit quantum electrodynamics
    Blais, Alexandre
    Gambetta, Jay
    Wallraff, A.
    Schuster, D. I.
    Girvin, S. M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. PHYSICAL REVIEW A, 2007, 75 (03):
  • [5] Back-action of a driven nonlinear resonator on a superconducting qubit
    Boissonneault, Maxime
    Doherty, A. C.
    Ong, F. R.
    Bertet, P.
    Vion, D.
    Esteve, D.
    Blais, A.
    [J]. PHYSICAL REVIEW A, 2012, 85 (02):
  • [6] COMPLETELY POSITIVE LINEAR MAPS ON COMPLEX MATRICES
    CHOI, MD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (03) : 285 - 290
  • [7] Simple All-Microwave Entangling Gate for Fixed-Frequency Superconducting Qubits
    Chow, Jerry M.
    Corcoles, A. D.
    Gambetta, Jay M.
    Rigetti, Chad
    Johnson, B. R.
    Smolin, John A.
    Rozen, J. R.
    Keefe, George A.
    Rothwell, Mary B.
    Ketchen, Mark B.
    Steffen, M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (08)
  • [8] QUANTUM COMPUTATIONS WITH COLD TRAPPED IONS
    CIRAC, JI
    ZOLLER, P
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (20) : 4091 - 4094
  • [9] Preparation and measurement of three-qubit entanglement in a superconducting circuit
    DiCarlo, L.
    Reed, M. D.
    Sun, L.
    Johnson, B. R.
    Chow, J. M.
    Gambetta, J. M.
    Frunzio, L.
    Girvin, S. M.
    Devoret, M. H.
    Schoelkopf, R. J.
    [J]. NATURE, 2010, 467 (7315) : 574 - 578
  • [10] Demonstration of two-qubit algorithms with a superconducting quantum processor
    DiCarlo, L.
    Chow, J. M.
    Gambetta, J. M.
    Bishop, Lev S.
    Johnson, B. R.
    Schuster, D. I.
    Majer, J.
    Blais, A.
    Frunzio, L.
    Girvin, S. M.
    Schoelkopf, R. J.
    [J]. NATURE, 2009, 460 (7252) : 240 - 244