The complexity of weighted and unweighted #CSP

被引:26
|
作者
Bulatov, Andrei [2 ]
Dyer, Martin [1 ]
Goldberg, Leslie Ann [3 ]
Jalsenius, Markus [4 ]
Jerrum, Mark [5 ]
Richerby, David [3 ]
机构
[1] Univ Leeds, Sch Comp, Leeds LS2 9JT, W Yorkshire, England
[2] Simon Fraser Univ, Sch Comp Sci, Burnaby, BC V5A 1S6, Canada
[3] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
[4] Univ Bristol, Dept Comp Sci, Bristol BS8 1UB, Avon, England
[5] Univ London, Sch Math Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
Counting; Constraint satisfaction; Complexity theory; DICHOTOMY;
D O I
10.1016/j.jcss.2011.12.002
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We give some reductions among problems in (nonnegative) weighted #CSP which restrict the class of functions that needs to be considered in computational complexity studies. Our reductions can be applied to both exact and approximate computation. In particular, we show that the recent dichotomy for unweighted #CSP can be extended to rational-weighted #CSP. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:681 / 688
页数:8
相关论文
共 50 条
  • [41] On the Computational Complexity of Non-dictatorial Aggregation
    Kirousis, Lefteris
    Kolaitis, Phokion G.
    Livieratos, John
    RELATIONAL AND ALGEBRAIC METHODS IN COMPUTER SCIENCE, 2018, 11194 : 350 - 365
  • [42] Simplifying complexity: a review of complexity theory
    Manson, SM
    GEOFORUM, 2001, 32 (03) : 405 - 414
  • [43] From Holant to #CSP and Back: Dichotomy for Holantc Problems
    Jin-Yi Cai
    Sangxia Huang
    Pinyan Lu
    Algorithmica, 2012, 64 : 511 - 533
  • [44] Approximate Counting CSP Seen from the Other Side
    Bulatov, Andrei A.
    Zivny, Stanislav
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2020, 12 (02)
  • [45] The approximability of MAX CSP with fixed-value constraints
    Deineko, Vladimir
    Jonsson, Peter
    Klasson, Mikael
    Krokhin, Andrei
    JOURNAL OF THE ACM, 2008, 55 (04)
  • [46] Every 2-csp Allows Nontrivial Approximation
    Johan Håstad
    computational complexity, 2008, 17 : 549 - 566
  • [47] EVERY 2-CSP ALLOWS NONTRIVIAL APPROXIMATION
    Hastad, Johan
    COMPUTATIONAL COMPLEXITY, 2008, 17 (04) : 549 - 566
  • [48] Learning and focusing strategies to improve ACO that solves CSP
    Rojas-Morales, Nicolas
    Riff, Maria-Cristina
    Neveu, Bertrand
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 105
  • [49] Sparsification of SAT and CSP Problems via Tractable Extensions
    Lagerkvist, Victor
    Wahlstrom, Magnus
    ACM TRANSACTIONS ON COMPUTATION THEORY, 2020, 12 (02)
  • [50] From Holant to #CSP and Back: Dichotomy for Holantc Problems
    Cai, Jin-Yi
    Huang, Sangxia
    Lu, Pinyan
    ALGORITHMS AND COMPUTATION, PT I, 2010, 6506 : 253 - +